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ABSTRACT

A method is presented to integrate the design space of structural/control
system optimization problems in the case of linear state feedback control. Con-
ventional structural sizing variables and elements of the feedback gain matrix are
both treated as strictly independent design variables in optimization by cxtending
design variable linking concepts to the control gains. Several approximation
concepts including new control design variable linking schemes are used to for-
mulate the integrated structural/control optimization problem as a sequence of
explicit nonlinear mathematical programming problems. Examples which involve
a variety of behavior constraints, including constraints on dynamic stability,
damped frequencies, control cffort, peak transient displacement, acceleration and

control force limits, are effectively solved by using the method presented.

XX



Chapter 1
INTRODUCTION

1.1 INTRODUCTION

Large space structures usually have low stiffness and low damping char-
acteristics due to their light weight requirements. In order to suppress the vi-
bration and maintain the strict shape specifications, it is necessary to enhance
stiffness and/or damping of the structures through some type of active controls

(Ref. 1).

Conventionally structural and controller design is performed separately
(namely, the structure is designed first to minimize the weight satisfying
structural constraints and then a control law is found for the fixed structure
minimizing some kind of control performance index), and as a result the final
design cannot ensure the best performance of the overall system since the dy-
namic interaction between the two systems is not directly considered in the
design process. In Ref. 2 it was shown that slight structural modification can
lead to considerable improvement in the control system performance, and there
has been a growing effort to integrate the design optimization of structures and
control systems in order to achieve a better performance and directly handle

cross coupling effects and dynamic interactions between the two systems.



Most of this research has focused on linear control laws based on output
feedback or state feedback. In the case of output feedback several studies have
been made where the structural dimensions and the control gains are treated
as strictly independent design variables in optimization (Refs. 2-10). On the
other hand, in the case of full state feedback control a sequential approach is
usually adopted in which the control gains are determined by solving Riccati
equations corresponding to the changing structural system during design iter-
ations (Refs. 11-17). When the gain variables are determined by solving
Riccati equations for a fixed plant, they implicitly become dependent design
variables and the resulting design optimization is constrained to a subspace
where the optimality conditions of a control subproblem are satisfied. The
tendency to subordinate gains to a dependent variable status can be attributed
to the fact that for system models with a large number of degrees of freedom,
the gain matrix [H] contains prohibitively large numbers of independent de-
sign variables (i.e. M x 2N control design variables, where M is the number of

actuators and N is the number of degrees of freedom in the structural model).

The main purpose of this study is to suggest a new simultancous opti-
mization method where both structural and control system variables are
treated as strictly independent design variables in the case of state feedback
control. This is accomplished via an adaptation of the design variable linking
idea to the control system design variables (see Refs. 26 and 27). This inno-

vation makes it possible to simultaneously optimize the structure/control sys-

|89



tem, while avoiding a prohibitively large increase in the total number of

independent design variables.

1.2  BACKGROUND

In Refs. 2-10 both structural and control variables are treated as inde-
pendent in optimization. Qutput feedback is adopted as a control law so the
number of elements in the fcedback gain matrix is relatively small. As a result
the gain elements along with structural design variables can be directly treated

as independent design variables.

In Ref. 2 collocated direct velocity output feedback, which is similar to a
viscous dashpot, is used as a controller. The viscous damping coefficient is
minimized, with constraints on the closed-loop eigenvalues, by allowing small

changes of the structural dimensions.

In Refs. 3-5 in addition to structural dimensions and control gains,
sensor/actuator locations are also used as design variables. Homotopy and se-
quential linear programming algorithms are used to optimize either structural
mass, robustness or eigenvalue sensitivity. Also in Ref. 3 the state feedback
control case is cast into a similar simultaneous optimization form by using el-
cments of weighting matrices of the LQR (linear quadratic regulator) as inde-
pendent design variables, but only the output feedback case is illustrated by

giving a numerical example.



In Refs. 6 and 7 collocated output feedback is chosen as a controller to
optimize a control augmented structure. In addition to the structural sizing
variables and control feedback gains, lumped nonstructural masses are treated
simultaneously as independent design variables. Harmonic dynamic loadings
are applied and a variety of constraints are considered including natural fre-
quencies, static displacement and stress, dynamic displacements and actuator
forces. Due to the characteristics of the collocated sensor/actuator pairs, sys-

tem stability can be ensured by imposing side constraints on the control gains.

In Refs. 8 and 9 noncollocated output feedback is chosen instead of
collocated sensorjactuator pairs, and constraints on the stability (real parts of

closed-loop eigenvalues) are included.

In Ref. 10 several output feedback control laws are used in the case of
stochastic disturbances with constraints on the allowable mean square de-

flection or control effort.

In Refs. 11-25 LQR theory is used for the case of state feedback control.
In the LQR problem once the weighting matrices in the quadratic performance
index are chosen, the control law (or all the closed-loop characteristics) is de-
termined by solving a nonlinear matrix Riccati equation. So the choice of
weighting matrices in the LQR problem is very important and two problems
arise. One is how to sclect meaningful weighting matrices, and the other is the
solution of the Riccati equation for problems involving a large number of de-

grees of freedom.



In Ref. 12 structural mass is minimized using structural design variables
while satisfying open-loop frequency constraints and then the LQR problem
is solved for the fixed structure with given weighting matrices. Here weighting
matrices are chosen such that the quadratic performance index represents the
absolute weighted sum of kinetic, strain and potential cnergies, and the effect
of relative weighting of these energy terms is discussed. In Refs. Il and 13
structural variables are optimized with constraints on the closed-loop
eigenvalue and modal damping ratios, then the LQR problem is solved for the
fixed structure with given weighting matrices (identity matrices in this case).
In Refs. 14-17 the Frobenious norm of the gain matrix is introduced as either

an objective or a constraint.

Refence 20 points out the difficulties of simultaneous structural/control
design and suggests optimization of the closed-loop system using only struc-
tural tailoring. In this case the objective of structural tailoring is to maximize
modal stiffness in order to minimize control effort. The control law is deter-
mined by solving the Riccati equation and the weighting matrices for the LQR
problem are similar to those in Ref. 12 except that only two independent

weighting cocfficients are used instead of three.

In Ref. 21 the weighted sum of the structural mass and control system

performance index is minimized.



Reference 22 treats structural variables as well as coefficients of the
weighting matrices and orientation of an actuator as design variables. Nu-

merical results are shown for a two bar truss example.

In Ref. 23 a nested optimization method is presented for the state feed-
back control which minimizes the total equivalent mass of the system (struc-
tural mass plus the mass effect of the control effort). Structural dimensions
and the coefficient of the control effort are optimized simultancously to mini-
mized the objective with a constraint on the mean square of the response.
Then the control law is determined by solving the Riccati equation with a new
set of weighting matrices (since the coefficient of the control effort is optimized,

the performance index is updated for each iteration).

In Refs. 24 and 25 locations of actuators and sensors are treated in terms
of (0,1) discretc variables. A utopian multiobjective function containing
structural mass, control cffort and number of actuators is minimized by treat-
ing structural variables, (0,1) actuator/sensor location variables and open-loop

gains as independent design variables in optimization.

1.3 SCOPE OF THE WORK

[n this study the finite element method and linear state feedback are
combined to formulate the control augmented structural optimization problem.
A truly simultaneous structural/control optimization scheme is presented in the

sense that it uses only one set of constraints and one set of design variables



(which includes structural sizing, control gain and actuator mass variables).
As mentioned earlier, this scheme was usually adopted for the output feedback
control case where the number of gains is relatively small, but by extending
design variable linking concepts to the control system gains, design space inte-
gration is achieved for the case of full state feedback control while using a rel-
atively small number of control system design variables. Several control design
variable linking schemes are presented and their feasibility and effectiveness

are shown by solving several examples.



Chapter 11
PROBLEM STATEMENTS

2.1 INTRODUCTION

In this study a new simultaneous approach to the design of both the
structural and the control system is presented. The finite element method is
used to model the structure and linear full state feedback control is chosen as
the control law. Dynamic analysis equations from the finite clement model
and the equations of the control system are combined and the design problem
is formulated as a general nonlinear inequality constrained mathematical pro-

gramming problem.

2.2  PROBLEM FORMULATION

The total mass of the systems has been chosen as the objective function
and constraints on: (1) dynamic stability (real parts of complex cigenvalues
or modal damping ratios); (2) damped frequencies (imaginary parts of complex
cigenvalues); (3) peak transient responses; (4) peak transient control forces; (5)
control effort; and (6) actutor mass constraints are included in this study. The

optimization problem treated here can be stated as follows:

Design a control augmented structural system which minimizes the total

mass and satisfies various behavior constraints as well as side constraints on



the design variables, while treating both structural and control design variables

" simultaneously and independently in the optimization loop.

In this problem there are three types of design variables. First group
contains the usual structural design variables (SDV’s) such as the cross sec-
tional dimensions (CSD’s). The second group includes nonstructural lumped
mass design variables such as actuator masses. And finally the third group
contains the control design variables (CDV’s). Since linear state feedback is
chosen, the elements of the feedback gain matrix constitute a possible set of
control design variables. However, this approach is limited because the num-
ber of control design variables grows very rapidly as the size of the model be-
comes larger. In order to overcome this limitation several control design

variable linking schemes are introduced (see Chapter [V).

The foregoing problem statement can be cast in mathematical form as

follows:

Find Y to minimize

F(Y) 2.1)

subject to

G(Y)<0, j=1,.,NCON (2.2)

with bounds

vV i=1,. NDV (2.3)



where NDV is the total number of design variables, Y = [Y, Y, ..., YapulT
is an NDV x | design variable vector, F is a scalar objective function, NCON
is the total number of constraints, G; is the j-th behavior constraint, and

YL, YV are lower and upper bounds of the i-th design variable, respectively.

10



Chapter III

’ MODELLING

3.1 FINITE ELEMENT MODEL

The cquations of motion are based on a finite element formulation. The
element stiffness and mass matrices for a general frame finite element in local
coordinates are given in Appendix A. By assembling the element matrices in

the global coordinates the equations of motion can be written as follows:

[M1{g} + [CI{q} + [Kl{q} = {F} (3.1)

where { ¢} is an N x 1 vector of nodal degrees of freedom (DOF), { ¢} and
{g} are first and second time derivatives of { ¢} respectively, [M] is an
NV x N mass matrix, [K] is an N x N stiffness matrix, [C] is an V x NV viscous

damping matrix, and { F} is an N x | load vector.

[t is assumed that the precassigned damping inherent to the structure can
be represented by a proportional damping matrix which is a linear combina-

tion of the structural mass and stiffness matrices, i.e.,

[C] = ey [(M] + cg[K], cypcg constants (3.2)

There are two kinds of load in the vector { F} of Eq. (3.1): control

(actuator) forces and external disturbances. With the assumption that the

11



actuator forces and the disturbances act at nodes of the finite element model,

{ F} can be written as
{F} =[61{u} + []{/S} (3.3)

where {u} is an M x 1 actuator force vector, M is the number of actuators,
{ f}is an L x | vector of external disturbances, L is the number of different
external disturbances making up a single load condition, and [#] and [e] are
N x M and N x L coefficient matrices consisting of the directional cosines
which respectively relate actuator and disturbance forces to the global coordi-

nates.

Now Eq. (3.1) can be written as

[M]1{g} + [C1{q} + [K1{q} = (6] {u} + [e]{/} (3.4)

3.2 CONTROL MODEL

Equation (3.4) can be transformed into the first order state space equation

{x} = [d,0{x} + [Bl{u} + [E]{S} (3.5)

where { x} is a 2N x | state vector which is the concatenation of the vector
of nodal DOF’s and its time derivative ({ ¢ }and { g} ), [4,] is the 2N x 2N
system open-loop matrix, [B] is the 2N x M system control input matrix, and
[E] is the 2N x L system disturbance matrix. The foregoing transformation

is accomplished by combining the identity {g} = [/]{¢} with the result

12



obtained by solving Eq. (3.4) for { §} and then introducing the following no-

tation: {x}7 = | {¢}T{q}7],

[0] (7]
[4,] = i . (3.6)
- [MIT'IK] - [M]'[C]
[ 0] ]
[B] = o, (3.7)
| (M1 [6] |
[ (0] ]
[E] = B (3.8)
| (M1 [e] |

where [ ] ~! denotes a matrix inverse, and [0] and [/] are zero and identit
y

matrices of appropriate dimensions respectively.

In control design problems the control law is to be determined. In this
study linear full state fcedback is chosen for the control { «} under the as-

sumption that all the states (components of { x } ) are available, that is

q
{u} =—[H]{x}=—[[Hp][Hv]]{} (3.9)
q

where [H] is the M x 2N feedback gain matrix, and [H,] and [H,] are the
M x N sub matrices containing position and velocity components of [H] re-

spectively.

Once { u } and/or [H] are determined, the closed-loop state equation can

be written as

13



{x}=[A]{x} + [E]{/} (3.10)
where the closed-loop system matrix [A] is
[4] = [4,] - [B][H]

[0] (1] (3.11)
— MITYCKT + [B)(H,D) - IMITHICT + [61IH,D)

14



Chapter 1V
DESIGN VARIABLE LINKING AND INITIAL CONTROLLER DESIGN

4.1 STRUCTURAL DESIGN VARIABLE LINKING

In the structural optimization problem some kind of linking scheme is
commonly used in order to reduce the number of independent design variables.
In this study two kinds of cross sections are used for the frame finite clements,
namely box beam and solid rectangular beam cross sections (sce Figure 1).
For box beam type elements there are 4 cross sectional dimensions which can
be chosen as design variables, i.e., width (B), depth (H), flange and web
thicknesses (T2 and T3). For the rectangular beam element there are two
candidates for design variables: width (B) and depth (H). These cross sectional
dimensions can be linked in different configurations. In Table 1 possible
choices for design variables of an element are shown along with the linking
options within the element. Once design variables for a particular master finite
clement are chosen, it is rather straightforward to link the design variables of

any other element to those of the master elcment.



4.2 INITIAL STARTUP FEEDBACK GAIN MATRIX

The purpose of control design variable linking is to keep the number of
independent control design variables within a tractable range for design opti-
mization. When any kind of linking scheme is imposed on the feedback gain
matrix, some design space freedom will be sacrificed and this will usually lead
to final objective function values that are inferior to those that could theore-
tically be achicved using a full set of control gain variables with no linking.
However, the performance of the overall design process will depend not only
on what kind of linking schemes are used but also on what kind of startup gain
matrices are used. Three different methods for generating initial startup gain
matrices, before imposing any kind of control variable linking, are suggested

here.

The first initializing method sets the feedback gains arbitrarily (e.g.
[H]=1[0] ) and then carries out a few design iterations without any control
design variable linking (i.c., all the clements of the feedback gain matrix are
independent design variables). This allows all the gains as well as the struc-
tural design variables to change freely for a few iterations in order to find a
reasonable initial design prior to imposing some linking on the set of M x 2N
control design variables. Even though the unlinked option is used for only a
few iterations, this can still be a serious restriction, limiting the application of
the method to small problems. In Chapter VIII this method is only applied to

small example problems.

16



The second initializing method is to solve the 2N x 2N nonlinear matrix
Riccati equation once in order to find the linear optimal control law corre-
sponding to the initial structural design. The initial gain values obtained from
the matrix Riccati equation solution are then used to establish fixed ratios be-
tween the gains that are assumed to hold throughout the design optimization

process.

The third approach is the decoupled Riccati equation method, which gives
an approximate solution to the conventional full order Riccati equation. This
method uses normal modes to replace the full order Riccati equation by several
sets of 2 x 2 Riccati equations that have explicit closed form solutions. By
neglecting the coupling effect in the feedback loop, the gain matrix in the
modal coordinates can be assembled (with feedback gain vectors corresponding
to each 2 x 2 decoupled Riccati equation solution) and transformed to the

physical coordinates using the normal mode information.

The sccond and third initializing methods are described further in the

following subsections.

4.2.1  Full Order Riccati Equation .

Consider Eqgs. (3.4) and (3.5) with the external disturbance terms set to

zero (ie. { f} = {0} ):

(M1{g} + [C1{q} + [K){q} = [6]{u} (4.1)

17



{x} = [4,0{x} + [BI{u} (4.2)

The optimal control law to minimize a given performance index
pL= [T (1700 (x) + ()T IRY {u) ) ar (43)
0

where [Q] and [R] are 2N x 2N positive semi definite and M x M positive
definite weighting matrices for states and control forces respectively, can be

determined from (see Ref. 28)

—[H) {x}
[ 2] q
= —[a) [Hv]]{ | } (4.4)
q

= — R B P {x)

{u}

where superscript o denotes the initial startup matrix, and the 2N x 2N posi-
tive definite symmetric matrix [P] satisfics the following 2N x 2V nonlinear

matrix Riccati equation:
[PITA4,] + [4,)7TP1 + [Q1 — [PIBILRY'[B1'[P] = [0] (4.5)

Here { } T and [ ] T represent transposed vectors and matrices, respectively.

4.2.2  Decoupled Riccati Equation Solution

In this subsection an alternative method which bypasses solution of the
full order Riccati equation (Eq. (4.5)) is presented. First find the natural fre-

quencies and normal modes of

18



(MI{q} + [Kl{q} = {0} (4.6)

that is solve the standard eigenproblem

0f IM1{v;} = [K1{v;} i=12,..r 4.7)
and normalize the modes { v, } so that

(vl M {v} =8y =12, r (4.8)

where r is the number of normal modes retained (r< N) and §; is the

Kronecker delta. Let
{q}=1[V]{z} (4.9)

where the i-th column of the N x r normal mode matrix [¥] is the i-th normal
mode {v;} and {z} = | 215 225 ,z,JT is an r x 1 normal coordinate vector.

Substituting Eq. (4.9) into Eq. (4.1) and premultiplying [ V]7 results in

{z} + Diag [¢]{z} + Diag [w]1{z} = (V1" (6] {u)} (4.10)

where Diag [¢;] and Diag [w?] are diagonal r x r matrices whose components
are ¢/s and w’s . It is noted that ¢; = ¢,, + ¢, w?, in view of the propor-
tional damping assumption embodied in Eq. (3.2). Equation (4.10) can be

written in scalar form as follows:

E4 ez + orzi= {v} [6]{u}, i=12,..r (4.11)

Now assume that the part of the control vector { « } which is related to

the i-th normal coordinate ( z; and z; ) can be calculated independently and
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that the resulting {  } is the sum of all the parts corresponding to each scalar

cquation Eq. (4.11).

The foregoing assumption can be stated as follows:

o+ h + ol = {Vi}T[b]({u}m + z{u}(k))

k#i
where
~ o~ z;
(uy? = —[{H,,}“{Hv}(”]{'}, i= 12
Z;
and

fuy = )t
i=1

(4.12)

(4.13)

R EVALRVARETALET AL ALY

. . . T
[Zl Z‘ 22 22 Zr Z’.]

X

(4.14)

S VAR ALY AL VALEVA LAY

.. . T
X [Zl 22 Zr Zl 22 Zr]

LN,

Z

The vector { u } defined by Eq. (4.13) is an M x [ control vector which con-

tains only i-th normal mode information (z,z). Furthermore, { H, 1,

{ H,} are M x | feedback gain vectors which relate { u} with z, z; respec-



tively, while [flp] and [flv] denote M x r position and velocity gain matrices

the columns of which are { ;Ip 1P and { flv 38 | respectively.

In order to recover the initial feedback gain matrix ([A°]) in the original
coordinates from [ﬁp] and [!}v] in the normal coordinates, premultiply Eq.
(4.9) by [V]T [M] and note that [V]T[M][V] = [/], in view of the normal-

ization imposed by Eq. (4.8), so that

{z} = (V1T M1 {q} (4.15)

Then substitute the above equation into the final form of Eq. (4.14)

(u}y = — [H){z} — [H]{z2}
= — HIV MY (g} - (HI0V] [M1{4} (4.16)

= — [Hy1{q} — [H]1{4}

from which it follows that

[H)=[ (HJ) (H1] (4.17)
[H2) = [H[V) [M] (4.18)
[H2] = [H,]0V1[M] (4.19)

Now the remaining problem consists of finding solutions for the r sets of
modal gain vectors {Flp 1 and {f{v 1. Eq. (4.12) can be transformed into

the standard first order state space form as
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(i} = [40 {w;} + [B] ({u}(i) . Z{u}(k))

k#i

(4.20)
0 1 [0] . r
=1, ey | ({u}“) + ) {uy®
— ] — ¢ {vi} [6]1]\ ket i
where {w;} = |z £]7 is the 2 x | state vector, [4;] is the 2 x 2 system

open-loop matrix and [B;] is the 2 x M system input matrix for the i-th modal

cquation.

The performance index for the i-th mode ( PI;) has the form

Pl = fw({w,.}T[Q,.] (wid + ()T [RY (u)?) e (4.21)
0

where [Q] = Diag (@i, 0%,) (@4, 04, >0) is a2 x 2 weighting matrix for
the i-th state vector and [R] = v, [[] ( [/] is an M x M identity matrix,
y;>0) is a weighting matrix for the i-th modal control force vector. Then the

i-th component of the control { « }{7 can be determined by

(D = — RITVBYT P (W)

Pi Pi Z;
S N RO GUTTR | { }
! P12 P Ly

(4.22)
- - —}}T[ [b]T{ vi}pfz [b]T{ Vi}Péz ] {

Zj
4

| T ' 1 )
= = -1 = -0 () P



Ph Pia

where the 2 x 2 positive definite symmetric matrix [P;] = satisfies
Piy P

the 2 x 2 Riccati equation

[(PILA] + [4171P] + [@] - [PABARY'[BATIPY = [0  (4.23)

Equation (4.23) can be solved in closed form (see Appendix B) and the results

are
2 4 :
i _ Toi t \/wi + WiQn
P12 LV{’
c+\/c2+WQ" 202 + 2Jot + w0 (4.24)
i TG i iQp — 20; + 2y + W0
P22 W

f
i i 2 i
P11 = P12 + wipn t PP Wi
where

w, = (v BIIRY 1017 (v} = —yli—{vi}r[b] (61" { ;) (4.25)

By comparing Eq. (4.13) and Eq. (4.22), the i-th feedback gain vectors in
normal coordinates can be obtained as follows:

i
P22

i
o) _ P12 o aT SANGEN
{Hp} - Vi [b] {vz}’ {HV} - };i

517 {v;} (4.26)

By substituting Eq. (4.22) into Eq. (4.12), the i-th closed-loop equation be-

comes
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3]
_+.

( T 1061 () o )
+ (w,z + %{vi}T[b] [b]T{Vi}Pié)Zi (4.27)

_ (—{vk}r[b] 01" (v} (Pl 2 + Pé‘sz))

To summarize, the original full order Riccati equation Eq. (4.5) is re-
placed by r sets of 2 x 2 Riccati equations (Eq. (4.23)) which have explicit
closed form solutions Eq. (4.24). Then the feedback gain matrix [1}] =
[[flp] [Irly]] in normal coordinates is transformed to [H] in the original co-

ordinate system by using Egs. (4.17)-(4.19).

The method presented in this subscction has a considerable advantage
over the full order Riccati equation solution approach described in the previ-
ous subsection. This innovative method is in fact explicit and efficient so that
this 2 x 2 Riccati solution procedure can be performed periodically to update

the fixed ratios initially established by the startup gain matrix.

4.3 CONTROL DESIGN VARIABLE LINKING (I): ROW-WISE AND
COLUMN-WISE CONTROL DESIGN VARIABLE LINKING

In this section various linking options for control design variables based
on row-wise and column-wise linking schemes of the feedback gain matrix are
presented (see Ref. 26). First the feedback gain matrix [ A] can be written in

various ways as follows:
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[H]

i
—
—

bm
(-
M
oy
<
d

—

L],
LH1;

LHJM

L. -

EARmam
Lf’sz L2 (4.28)

AREAr

L =

SR ALEY ALY ALET SUNV ALY S

l_

[ ML) H(12) - - - H(I2N) |
H(21) HQ22) . . .  HQ22N)

LH(M,l) HM2) - . . H(M2N)

where [H] is the M x 2N feedback gain matrix, [H,] and [H,] are M x N sub
matrices of [ H] containing position and velocity parts respectively, | H |; is the
j-th row (1 x2N) of [H], | H,], and | H,]; are the j-th rows (1 x N) of
[H,],[H,] respectively, {H,} and { H,}' are the i-th columns (Mx1) of

[H,] and [H,] respectively and H(j,i ) is the (j,i }-th component of [H] .

The main ideas underlying the creation of alternative row-wise and

column-wise control design variable linking schemes are: (1) separation of ve-



locity and position parts of the gain matrix; (2) various row and column
schemes corresponding to actuator and degree of frcedom linking; and (3)
linking schemes based on only allowing changes in various sets of velocity
gains. Combining the foregoing ideas leads to numerous linking schemes with
distinct sets and various numbers of independent control system design vari-

ables (CDV’s), ranging from | to M x 2N (sce Table 2).

For example consider option number 5 in Table 2. The feedback gain

matrix can be written as follows:

— - -

LH,)r LAV o LHp )1 oy LAYV,

LH,l, LA, 0 Hyly ey LHY )

[H]= (4.29)

LA v LH g ay LHp Iy 2oy LHY Ly

L,

Left hand side represents the M x 2N feedback gain matrix in partitioned
row-wise form (| H,];, |H,]; represent the j-th rows of [H,] and [H,], re-
spectively), and the right hand side has scalar participation coefficients («,s)
placed in front of the partitioned rows of the initial startup gain matrix on
which the linking scheme is imposed (superscript o denotes the initial startup
matrix). During optimization the ;s are treated as independent design vari-
ables (simultancously with the CSD’s) and as they are optimized, the feedback
gain matrix [ H] is optimized in the constrained design space corresponding to

the fixed ratios established by the rows of the initial startup matrix.



4.4 CONTROL DESIGN VARIABLE LINKING (II):

BLOCK TYPE CONTROL DESIGN VARIABLE LINKING

In this section a different approach to linking of control design variables
is introduced and assessed when the decoupled 2 x 2 Riccati equation solution
method is used in finding the initial startup gain matrix (see Ref. 27). The
initial feedback gain matrix obtained by solving r sets of 2 x 2 Riccati

equations (Eqgs. (4.17)-(4.19)) can be rewritten in the following form

[H) = [H]] (H] ]

~

. . r 4.30

=2 [ @ | = e -
i=1 i=1

() =) (H 1P (v T = Yt (431)
i=] =1

(1= ) L (v Tty = ) g (4.32)
=1 i=1

where superscripts (i) indicate that these quantitics correspond to the i-th
Riccati equation. The forcgoing equations imply'wthat the [H3]9's and
[H2]®’s or the [H°]®'s may be interpreted as basis matrices which can be
used to generate the initial gain matrix. This suggests that the actual feedback
gain matrix can be well approximated as a linear combination of these basis

matrices, namely

[H]=)" o, [H (4.33)

i=1
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or

,

(1= [ TH D app, )10 | (4.34)
i=1

The whole feedback gain matrix can be linked (Eq. (4.33)), or the position and

velocity parts of the gain matrix can be block linked separately (Eq. (4.34)).

During optimization the participation coefficients a/'s are treated as independ-

ent design variables along with the structural sizing variables. It should also

be noted that these participation coefficients can be further linked with each

other.

4.5 PROBLEMS IN CONTROL DESIGN VARIABLE LINKING

In this section some special aspects of using control design variable linking

schemes are discussed.

When a specific control design variable linking scheme is used, the relative
values of certain clements in the feedback gain matrix [H] remain frozen
throughout the design process according to the linking scheme sclected. For
example, if the last option of Table 2 (which links all the elements of [H] to-

gether) is used, all the ratios among the elements of [H] are invariant.

But, as mentioned earlier, 2 x 2 Riccati equations can be re-solved to
update the fixed ratios between the elements of the gain matrix. This is done
by finding a new weighting coefficient (y, see Eq. (4.21)) for each mode. A

rational procedure for updating the weighting matrices is described in Appen-



dix C. When the new sets of weighting matrices are found, special attention
IS given to preserving continuity of the real part of the closed-loop eigenvalues,
so that the dynamic behavior remains relatively smooth between the updating

stages.

Another problem to be adressed in using control design variable linking
schemes is that higher modes, which are not directly constrained in the opti-
mization problem, may become unstable after several design cycles. This effect
is explained in detail in Appendix D and a way of preventing instability of
unconstrained higher modes without knowing higher mode information is also

suggested.
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Chapter V

DYNAMIC BEHAVIOR CONSTRAINTS

5.1 INTRODUCTION

For the dynamic problems with transicnt cxternal disturbances the set of
possible behavior constraints should include: (1) complex eigenvalue con-
straints; (2) transient response and control force constraints; and (3) control

cffort constraints.

Every inequality behavior constraint can be written in the form
8 = &, (5.1)

where g is a measure of a certain behavior and g, is its allowable value. The
above relation is transformed into a normalized form with respect to its al-

lowable value such that the constraint function (G) is always negative.

G <90 (5.2)
where
g
Gz—é——l, when g, > 0,
e g (5.3)
G=1-— when g, <0
&a
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5.2 COMPLEX EIGENPROBLEM

Since the closed-loop [A] matrix (Eq. (3.11)) is not symmetric,
cigenvalues and eigenvectors are complex and two distinct sets of eigenvectors
exist for each cigenvalue. For the i-th eigenvalue 4, , the right eigenvector

{ ¢, } satisfies
[A] {d’,} = /1,‘{05,'} (5-4)

and the left hand eigenvector { y, } satisfies

(i 141 = a4uy7 (5.5)
and
A =0; + oy (5.6)

where ¢; and w, are rcal and imaginary parts of the i-th complex cigenvalue.

Also the modal damping factor ¢&; of the i-th mode is defined as

y \F

~\/ 0'1'2 + wtzil

These two sets of right and left hand eigenvectors are normalized such that (see

Ref. 29)
(6} (6:) = 4 (5.8)
and

(ot (i) =3y (5.9)
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where d, is a normalizing scalar constant for the i-th right cigenvector and d;
is a2 Kronecker delta. After solving both right and left eigenproblem, and
normalizing the cigenvectors, it can be shown that the following matrix re-

lations represent valid identities:

[A] [@] = [®][A]
w1741 = [a10vl’ 510
i @1 =[] '

(17 [41[®] = [A]

where [®] = [ #, ¢, .. ¢z ] is @ 2N x 2R eigenmatrix in which the i-th
column is the i-th right hand ecigenvector, [W] = [ Y, ¥, . ¥r ] is a
2N x 2R eigenmatrix in which the i-th column is the i-th left hand eigenvector,
[A]is a 2R x 2R diagonal matrix which contains cigenvalues on its diagonal

and 2R is the number of cigenvalues and cigenvectors considered (R < V).

5.3 DYNAMIC TRANSIENT RESPONSE ANALYSIS

Time dependent response and control force constraints are replaced with
a finite number of peak constraints by first finding the corresponding peak

times using the adaptive one dimensional search method described in Ref. 30.

In order to calculate the transient response of the given system Eq. (3.10)
should be integrated in the time domain. Since Eq. (3.10) is coupled and usu-
ally large, a set of complex cigenvectors is chosen as a basis to diagonalize and

reduce the dimensions of the original equation. Let



{x} =[®]{n} (3.11)

where [®] is a 2N x2R(R < N) right hand eigenmatrix and {5} is a
2R x 1 complex normal coordinate vector. Substituting Eq. (5.11) into Eq.
(3.10) and premultiplying by [¥]7 ( 2R x 2N left hand eigenmatrix trans-

poscd) yields

Cv1 (@1 {(n} = (Y1 (41101 {n} + (Y17 (ET{S) (5.12)

and introducing the identities in Eq. (5.10) leads to

() =[A1{n} + (Y1 [E1 (S} (5.13)

Equation (5.13) is cquivalent to the following sets of 2R first order scalar dif-

ferential equations

np= A+ W IE){fY, i=1p2, .. ,2R (5.14)

Integrating Eq. (5.14) with respect to time gives
s t .
100 = HDnie) + [ MO (g T () ) de (5.15)
[O

where ¢, is an initial time and ¢ is a specific time of interest. Here { f(¢) } is
assumed to be cxpressed in terms of a truncated Fourier series and

polynomials over a specified period of time i.c.,
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(F(6)) = Z({FC}kcos Qut + {FS}, sin Q) + Z{FP}p P
k=1 p=0

(5.16)
when 0<t < i

{f(t)y} = 0, when >t/

where ¢, is the specified time interval during which disturbances arc applied,
N, is the number of different driving frequencies, {FC}, and {FS}, are
L x 1 vectors which contain cosine and sinec components corresponding to the
k-th driving frequency €, and N, denotes the highest order polynomial term
considered and the L x 1‘ vector {FP}, corresponds to the p-th order

polynomial. Then substituting Eq. (5.16) into Eq. (5.15) yields

ni(n) = e“in;(0)
Ny
T L i=1)
+{¥;} [£] J e’ Z ({FC},, cos ur + {FS}sin Q1) |dr
0 k=1
[ N, (5.17)
+ {wi}T[E]Je"f(’—’) Y (FP}, <" |dr  when 0<t<y
0 =0
ni() = el tf)"li([f) when ¢> ¢

More detailed expressions for the n/s are given in Appendix E. After calcu-

lating the /s, i=1, .. ,2R the state vector { x(f)} can be recovered from
Eq. (3.11)
{x} = [®]{n} (5.11)

and the control force vector { u(t)} (see Eq. (3.9)) is given by
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tup = = [H]{x} = - [H][®]{n} (5.18)

Also the transient acceleration can be calculated by differentiating Eq. (5.11)

with respect to time and using the relation Eq. (5.13) to give:

{x} = [®]1{n} = [®I(AT{n} + YT [(ET{sfD) (5.19)

5.4 CONTROL EFFORT

The control effort can be defined as

Control Effort :J. {u} [Regl {u} dt

0
(5.20)

4 oo
= [ Rl (e + () TR ()
0 b

where [Rcg] is an M x M positive definite symmetric weighting matrix.

When the time ¢ (during which the external disturbance force is applied)
is small, the first term of the right hand side is negligible compared with the

second term. So in this work the control effort (CE) is defined as

e

CE = | {u}T[Reg] (u}dt
y

.

= T e T R TH {x ) (5.21)
i

= OO{X}T[QCE] {x}ar
“lr

where [Qce] = [H]T[Ree] [H].
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Consider the closed-loop equation (Eq. (3.10)) when t > ¢
{x} = [A]{x}, t =t (5.22)

Substituting Eq. (5.11) into Eq. (5.22), premultiplying by ['¥']7, and using the

identities in Eq. (5.10) leads to the following expression
{n}y=1[A1{n}, t=¢ (5.23)

Substituting Eq. (5.11) into Eq. (5.21) above gives

CE = ro{n}TECD]T[QCE][CD]{n}dt
i (5.24)

I

[Tt 81y

i

where [é] = [®]T[Qce] [®] . From Eq. (5.23), the complex response

{n (1)} can be written as
(= Ny, =2y (5.25)

Substituting Eq. (5.25) into Eq. (5.24) yields

o0 T, ~
CE = (n ()7 [T 0G1 M D )y (526
y
Let
(W] = Jwe[/\f("’f)[é] A= 1) g (5.27)
b
then
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(AT [W] + [W][A]

— J‘OO[A]Te[A]T(t—t/)[é] E’[A]([—‘f)df
i

+ f""e[A]T( =) 157 AT =4 AT ar
y

B Eo%( AU 51 A=) ) g (5.28)
_ [e[A]T(:—zf)[é]e[A](r—zf)]Ioo
y
= [0] - [Q]
= - [Q]
or
[AT[WV] + [W][A] = - [0] (5.29)

which is a Lyapunov equation. Therefore the control effort of Eq. (5.26) is

given 'by
CE = {n(t)} DV {n (1)} (5.30)

where [ﬁ’] satisfies Eq. (5.29). Equation (5.29) can be solved clement by cle-
ment since [A] is a diagonal matrix and [é] is a symmetric matrix, i.c.,
~ Q,~j

Wy = —
y A+ 4

(5.31)
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where W, and Q; are the (i,j)-th element of [W] and [Q] ( @y =

{¢,}T[Ocel { ¢, }) and { ¢;} is the i-th complex right hand eigenvector.

5.5 ACTUATOR MASS CONSTRAINTS

The actuators, located at specified structural nodes, can be sized so that
they produce control forces or torques required to suppress the vibration. In
Ref. 31, it is assumed that actuator masses are fixed during one cycle of opti-
mization, and they are updated after finding peak control force or torque val-
ues of the new design according to functional or empirical relations between

the maximum peak control forces or torques and the required actuator mass.

When the closed form solution for the transient peak control forces or
torques is available, the relation between the actuator mass and the control

forces or torques can be mathematically stated in a constraint form as follows:
my=cy | u(r) |2, 0< 1<ty (5.32)
or
my>c |ut))|?  j=1,.., NPEAK (5.33)

where m,, is the mass of the actuator, ¢, is the time interval of interest, & is
the j-th peak time for control forces or torques, NPEAK is the number of
control force peak times, and ¢, , ¢, are constants relating the peak control

forces and required actuator masses. Eq. (5.33) can be normalized such that
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j=1,..
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Chapter V1

SENSITIVITY ANALYSIS
6.1 INTRODUCTION

In order to generate approximate problems first order system sensitivity
information with respect to both structural and control design variables is re-
quired. Since it is assumed that the external loads are cxpressed in terms of a
truncated Fourier series and polynomials over a specified period of time, it is
possible to calculate all of the (first order) behavior sensitivity derivatives an-

alytically.

6.2 FUNDAMENTAL SYSTEM MATRIX DERIVATIVES

Derivatives of [ H] with respect to control design variables are obtained
directly and derivatives of [M], [C] and [K] with respect to structural vari-
ables are obtained analytically from the finite element formulation. From this
information analytic sensitivities of the system [A] and [E] matrices (see Eq.
(3.10)) can be obtained with respect to an arbitrary intermediate or direct de-

sign variable a , as follows:

. [0] (0]
da 5[.421] 8[A22] '
ou oo
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and

(0]
GE] _ 62)
da o[E,] '
Jot
where in general
[ A ; N ¢[H,]
Ada) 0“’] ek + 10H,3) — (] ‘( K] | =2 )
ot da dut
(6.3)
o[ A armMy! _ a[H,
Ul (e + I, - (M) ‘(am + s ])
ot da
GLEy)  army!
Oot - Jo Le] (6-4)

[t should be noted that the matrices [#] and [e] are constant with respect to
any design variable and that according to the type of the design variable « ,
structural or control, some matrices are independent of that kind of design
variable. In other words, the derivatives of [M], [C] and [ K] with respect to
the control design variables are zero and those of [H,] and [H,] with respect

to the structural design variables are also zero. The derivative o[ M]~!/0u is

calculated by differentiating [M] [M]-!' = [[] = constant , which results in
. —1 -
oM ~1 ¢ _
oMy _ [M] 1__[11_]_[11.[] 1 (6.5)
oa Jda
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6.3 EIGENPROBLEM SENSITIVITIES

Eigenvalue sensitivities are needed not only because cigenvalues them-
selves can be behavior constraints but also because they are required to calcu-
late other response sensitivities (see Eq. (6.18)). Furthermore, in order to
obtain precise transient response sensitivities, eigenvector sensitivities are also

calculated using an analytic method (Refs. 32 and 33).

Differentiate Eq. (5.4) and (5.5) with respect to « and rearrange terms

(4] — 4,00) M b (”[””

{d>}-———{d>}) (6.6.a)

npo AT 04;
R R (U L") 6ss)
dot Jo

or
é .

(Z] {a(il} = — {F} (6.7.2)

W ) — L [z1= - {6’ (6.7.5)
where
[(Z] = [4] — A[1] (6.8)
{Fi} = (6.9.a)

0 04; :
()T = ()T 2L = Sy )T (6.9.6)



Premultiplying Eq. (6.6.a) by { ¢, }7 and using Eq. (5.5) and Eq. (5.9) leads to

the following expression for eigenvalue derivatives

?aii = (Z)Zi + a;odl {¥ }Ta[—A]{d’} (6.10)
or
R L P U R ~La P 6.11)
and
L _ gy, RS o+ il 2o, 6.12)

where subscripts R and 7 represent real and imaginary parts. The sensitivity
of the modal damping factor £, is calculated by differentiating Eq. (5.7) with

respect to a as follows:

o @i\ 7i 5, Ja i 613)

o (7 + )"

The derivative of the i-th eigenvector can be expressed as the sum of ho-

mogeneous and particular parts, as follows:

ol d;}

= aq{d;) + (Vi) (6.14.a)
- T
i;’% = bi{y;} + (uyT (6.14.5)
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The particular solutions { ¥;} and { U, }7 satisfy
[Z1{V;} = — {F} (6:15.a)
(uyTiz = - (G’ (6.15.5)

where [Z] is matrix [Z;] with the r-th column and row replaced by {e } and
{ e }T respectively, { e, } is a vector containing 1 in the r-th element and 0’s
clsewhere, { F,} and { G,} are vectors { F;} and { G;} respectively with the
r-th element replaced by zero, where r is the location of the maximum absolute
element in {@;} . The coefficients of the homogeneous parts, g; and b;, can
be calculated by differentiating the normalization conditions Eq. (5.8) and Eq.

(5.9), noting that d, is a constant and i = j as follows:
d T d T
aﬁm}{mn=o,E«W}{mn=o
hence (in view of Eq. (6.14))
{¢5}T(ai{¢i} + {V;}) =0,

(6 (wy” + (U )it + (W) (@ {8} + {Vi}) =0

so that
T T
%z__wg#n}z_{mzuw 616
(6,37 {6} i
b= — a;—{U} {&;} — {0} (V) (6.16.5)
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6.4 TRANSIENT RESPONSE SENSITIVITIES

For an arbitrary peak time ¢, peak response sensitivities can be calculated
by differentiating Eq. (5.11) as

d{x()}

el A (CIRETGHY
[ 4

a[

6.17
5{n(t)} (47

{n} + [®] ———

In the above equation, the only term not previously derived is 8{ n (¢) }/d« and
it can be obtained by differentiating Eq. (5.15) with respect to the design var-
iable o, assuming that the external disturbances are independent of the design

variables, i.e. Q,, {FC},, {FS},, k=1, Ny and {FP},, p=1, N, are constant

as follows:
on;(t t
'g“ _ F@_{ A=)y () 4 j M=)y 3T (] {f(r)}df}
a o t,
= %i—l(f— !0) e;{i(t_to)ni(tO) + e'{"(t—’o) ané_f(xt())
104, L (t—1) T
o 5 U0 Y [ET{f (1) b dr (6.18)

Jy

t
e 2T w ) [E]{f(1)}dr

+ “‘"’{w}”am ()} di

'to

Once d{n (¢) }/0ua is calculated, sensitivities of control force and acceleration

can be obtained by differenting Eqs. (5.18) and (5.19), respectively.
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A more detailed derivation of dn, (t)/dx is given in Appendix E. It should
be noted that the above calculation is carried out only at previously identified

peak response or peak control force times.

6.5 CONTROL EFFORT DERIVATIVE

The sensitivity of the control effort with respect to the design variable o

is obtained by differentiating Eq. (5.30),

~

o[w]
Oa

~ 0{n(t)}
(1)} + 2 {n () T —L— (6.19)

o

d(CE)
dat

= {n(tn}"

In the above expression d{n (¢/)}/dx can be calculated according to the pro-
cedure presented in the previous section for ¢ = t; and the only unknown term

is 0[ﬁ/]/8a and it can be determined by differentiating Eq. (5.31) as follows:

Wy e 1 N5 o 1%
oa 60! /1" + lj y /li + X] aa
- (6.20)
R U TR A V- S 0Q;
A + Aj)z\aa da )V (A + 4) 0o
but
05 = (0} [Qce) {4;) 6.21)
so that
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~

aQij _ T a[QCE]
dou (i} dot

()
(6.22)

e}

T o{d;}
+ T[QCE]{¢j} + {¢;}" [QcE]

du

6.6 ACTUATOR MASS CONSTRAINT DERIVATIVE

The sensitivity of the actuator mass constraint with respect to an arbitrary

design variable « is obtained by differentiating Eq. (5.34) so that

* C2
6 o (14
= 2

Jda “ (3&( my (6.23)
which gives

. ou(t;)

oG 1 o -1 J 1) (3(1)

du Cll:mA cz{u(tj )} oa * {u(t/ )} da \ M4 (6-24)

when w(¢) 2 0 and

(g—g = CII: - %62{ - u(t;)}cz—l al;(;j) N { B u(t;)}cz %(7"]7):, (6.25)

ou(t})
when (/)< 0. In the above expression, @ is the sensitivity of the peak
control forces, and %(7]—) is nonzero only when « is the corresponding
o A

actuator mass variable.
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Chapter VII

OPTIMIZATION

7.1  INTRODUCTION

Various approximation concepts such as structural and control design
variable linking presented in Chapter IV, temporary constraint deletion and
intermediate design variables (Refs. 34 and 35) are used to replace the original
optimization problem stated in Chapter Il by a series of explicit approximate
problems. With the first order sensitivity information derived in Chapter VI,
linear, reciprocal or hybrid approximations can be made with respect to either
direct or intermediate design variables, even though the approximate design
optimization problems are always solved in an integrated design space that
spaﬁs the actual structural CSD’s and the participation coefficients of the
linked control gains. Each approximate optimization problem has its own
lower and upper bounds on the design variables determined by given move
limits and retains a set of constraints which are active and potentially active

for the approximate problem.
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7.2 INTERMEDIATE DESIGN VARIABLES

In order to generate a high quality approximate problem intermediate
design variables are used. For frame elements it is known that the section
properties A, I, , I, and J are a good choice for intermediate design variables.
This follows from the fact that the elements of the stiffness and the mass ma-

trices are linear functions of these section properties (see Appendix A).

Control design variables are used directly in the generation of the ap-
proximate problem because the system matrices are linear functions of the
gains. After some numerical experimentation, most behavior constraints used
in this work are found to be adequately approximated by the linear approxi-
mation with respect to control design variables. So when gencrating the ap-
proximate functions the linear approximation is always chosen for control
design variables although the hybrid approximation can be used with respect

to intermediate structural design variables.

7.3 TEMPORARY CONSTRAINT DELETION

In order to find a reduced sct of constraints for each approximate problem
the following rules are used: (1) all constraints which are greater than a given
cutoff parameter are retained; and (2) when all the constraints in one specific
category, for example when all the peak actuator force constraints are less than
the given cutoff parameter, the one which has maximum value among them is

retained so that the effect of this specific category will not be neglected.
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After determining which constraints are retained for the approximate
problem, sensitivities of those retained constraints along with the objective

function are calculated analytically as shown in Chapter VI

7.4 APPROXIMATE PROBLEM

With the information acquired from the analysis and sensitivity analysis

phase each approximate optimization problem can be formulated as follows:
Find a design variable vector Y to minimize
F(X(Y)) (7.1)
subject to

G/(X(Y)) <0, jeQg (7.2)

with bounds

<vYY i=1,.,NDV (7.3)

where NDV is the total number of design variables, Y is a vector of design
variables (NDV x 1), NIDV is the total number of intermediate design vari-
ables, X (Y ) is a vector of intermediate design variables (N/IDV x 1), F () is
an approximate objective function, (~?j (*) is the j-th approximate constraint,

\7} and i’,U are lower and upper bounds of the i-zh design variable which are



determined by a given move limit, and Qy is the retained set of constraints for

the approximate problem.

Either linear , reciprocal or hybrid approximation can be used for F )
and f}j (*). The details of the hybrid approximation follow. Lct} (*) be any
approximate function ( F (") or 5j (*) ), then during the approximate opti-
mization cyclej~r (1) is

NIDV .

r X(Y
FN(Y) = £IN(Y,) + 2 %_))_

k=1

B, (X(Y))

NIDV (7.4)

=/fo t Cok B (X(Y))
k=1

where Y, f,=/(X(Y,)), Cor =0f(X(Y, )X, k=1,.., NIDV are values

at the beginning of the approximate problem which remain constant during the

cycle, and
B, (X(Y)) = Xp(Y)— X (Y,) when C,, > 0
| 5 | [ (7.5)
B, (X(Y)) = —(Xk(YO)) <Xk(Y) — Xk(Y0)>’ when C,, < 0

and derivative of f (-) with respect to the i-zh design variable Y, is

M NIDV -
of (X(Y)) _ ZC IB(X(Y)) (7.6)
3Y; AT '
where



JdB, (X(Y X, (Y
K (¥)) ((Y) when C,, > 0

3

3Y; 3Y;
9B, (X(Y)) X, (Y,)\? X, (Y) 7D
(/‘ s £ 4
il kX o k . when C, < 0

oY; X, (Y) Y,

Note that when no intermediate design variables are used,

NIDV = NDVand X(Y)=YorX; =Y, i=1,2, ... ,NDV.
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Chapter VIII

NUMERICAL RESULTS

8.1 INTRODUCTION

The control augmented structural optimization solution method described
in the previous chapters has been implemented on the IBM 3090 main frame
computer at UCLA. Numerical results for several examples, which illustrate
the ctfectiveness of alternative control design variable linking schemes, are
presented here. In most example problems, CONMIN (Ref. 36) is used as the
optimizer, and it is conservatively assumed that the passive damping is zero
(cy = cx =0, see Eq. (3.2)), unless otherwise specified. The convergence cri-
terion used in these examples is that the relative change in the objective func-
tion values between two sets of consecutive design iterations should be less

than 0.1 percent.

8.2 EXAMPLE 1 - CANTILEVER BEAM

The first example is a cantilever beam as shown in Figure 2 free to deflect
in plane (E =7.1 x 10° N/em?, p = 2.768 x 103 kg/cm3 ). It has a box beam
type cross section and is modelled by 10 equal length (100 cn) finite elements
resulting in 20 degrees of freedom (V = 20). A concentrated mass of 200 kg

is located at the middle of the beam and a single translational actuator
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( M = 1) having a mass of 4 kg applies control force u(t) at the tip. A tran-
sient half sine pulse (with a magnitude of 4000 N at a frequency of 3.9 Hz) is
applied at the tip translational degree of freedom for a time interval 0 < ¢ <
0.1282 seconds. The dimension of the first order state equation (see Eq. (3.10))
is 40 (2V), so the total number of complex modes is 40. Transient responses
are considered for the time interval 0 < ¢ < 2 seconds and the lowest 20 out
of the 40 complex modes (according to the absolute value of the imaginary
parts of the complex eigenvalues) are used to calculate the transient responses.
The normalizing constants for the right hand complex eigenvectors (ds, see

Eq. (5.8)) are chosen to be 10°.

For cach finite element the width (B) and depth (H) are fixed (B=H =40
crt), but the flange and web thicknesses are free to change (subject to side
constraints 0.5 em < T2, T3 < 10.0 cm) resulting in two design variables per

finite element. Initial thicknesses are all set to 5.0 ¢m.

Total mass is taken as the objective function and it includes: (1) the fixed
mass at midspan (200 kg); (2) the fixed actuator mass at the tip (4 kg); and (3)
the variable structural mass. All the finite elements are linked resulting in 2
structural design variables (SDV’s). Hybrid approximations in terms of the
structural intermediate design variables (sectional properties) are used while
the approximations with respect to the control design variables (CDV’s) are
linear. Behavior constraints are imposed on: (1) the real part of all the re-

tained complex modes (o; < —0.5,i=1,..10): (2) the lowest damped fre-
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quency (wg =40 Hz ); (3) the peak tip displacement,

(1 q4()] < 10.0 cm); and (4) the peak actuator force ( |u(¢)] < 1000 N).

8.2.1 Control Design Variable Linking (1)

In this section, row-wise and column-wise control design variable linking
schemes which are described in section 4.3 are applied to the cantilever struc-
ture. The maximum possible number of control design variables is relatively
small (M x 2N = 40), so all available control design variable linking options
are tried (see Table 2). Since there is only one actuator, there are 5 distinct
control design variable linking options for the same problem instead of 10 (for
M =1 cach column of the gain matrix contains only one element, so the
options 1, 2, 5, 7 and 6 are identical to 3, 4, 8, 9 and 10, respectively, see Table

2).

Initial startup feedback gains are computed by solving 10 sets of 2 x 2
Riccati equations corresponding to the lowest 10 normal modes (r = 10). The
control weighting cocfficients y,'s are set to 1/300 and the 2 x 2 state weighting
matrices are chosen to be [Q;] = Diag (w?, 1 )i=1,..., rso that the first term

of Eq. (4.21) represents a total (strain and Kinetic) modal energy.

Five distinct control design variable linking options are imposed on the
startup gain matrix from the beginning. Move limits of 50 to 60 percent for

structural variables and 90 percent for control variables are used. Iteration

Ln
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histories and final structural designs are given in Tables 3 and 4 respectively,

and are also displayed in Figures 3 and 4.

In case | the feedback gain matrix is totally unlinked (or equivalently
columns of [H] are linked, Option 1 or 3 of Table 2). The number of control
design variables (CDV’s) is 40. This case allows complete freedom in the
control design variable space and the final design is a near minimum gauge
design with respect to the cross sectional dimensions (sce Table 4). In case 2
the position part of the feedback gain matrix is fixed and the elements of ve-
locity part are chosen as design variables (or columns of velocity part are
linked, Option 2 or 4 of Table 2), resulting in 20 control design variables. In
this case the convergence is relatively slow and the optimum mass is high con-
sidering the freedom given to the design space. This is because even though
the clements of the velocity part of the feedback gain matrix can change freely,
the fixed initial position gains are not appropriate. This can be attributed to
the fact that when the position gains are fixed at their initial values, the peak
displacement and frequency constraints must be satisfied by increasing the
structural stiffness (once the peak actuator force constraint has become active).
In case 3 the position and velocity parts (or the rows of the position and ve-
locity parts) of the feedback gain matrix are linked (Option 5 or 8 of Table 2),
which leaves 2 independent control design variables. The results for this op-
tion are remarkable because it takes only 10 analyses to completely converge
to a near minimum gauge design using only 4 independent design variables (2

SDV’s and 2 CDV’s). In case 4 the position part of the feedback gain matrix

56



is fixed and the velocity part (or the rows of the velocity part) of the feedback
gain matrix is linked (Option 7 or 9 of Table 2) which leaves a single control
design variable. In case 5 the row of the feedback gain matrix (or the the en-
tire feedback gain matrix) is linked (Option 6 or 10 of Table 2) which leaves
also only one control design variable. Cases 4 and 5 exhibit similar conver-
gence histories and final designs except for the position part of the feedback
gain matrix (which is frozen in case 4). As one would expect when seeking a
minimum mass design, the tinal web thicknesscs in all cascs are at the lower

bound value (i.c. T3 = 0.5 ¢m, scc Table 4 and Figure 4).

For comparison purposes the results for cases 1-5 are summarized in Ta-
ble 5 along with the active constraints at the final design. Most cases con-
verged smoothly and the maximum difference in the final objective function
values achieved was as less than 15 percent. As expected the final design mass
becomes larger as more restrictive linking is imposed, but the convergence be-
comes more robust and the total number of analyses required to obtain con-

vergence is reduced (e.g., see cases 3-5).

8.2.2 Different Initial Gains for Generating Startup Gain Matrix

In this scction different arbitrary initial feedback gain matrices are used
to find startup gain matrices in order to examine the first initializing method
(see section 4.2). It will be recalled that this method chooses arbitrary initial
control gains to start and then allows a few totally unlinked iterations before

imposing any control design variable linking. Four different initial feedback
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gain arrangements are chosen and 3 iterations are allowed without any control
design variable linking (40 independent CDV’s, option | or 3 of Table 2).
Then the position and velocity parts of the gain matrix are linked (2 inde-

pendent CDV'’s, option 5 or 8 of Table 2).

In case 6 the initial gain matrix is null ([H] = [0]). In case 7 the initial
gain matrix is chosen in a manner similar to that which would be used if direct
output feedback control was being employed (H(1,19)= 5 kg/sec.?,
H(1, 39) = 100 kg/sec., H(1, i) = 0, elsewhere). In cases 6 and 7, in addition to
the larger move limits for the control design variables (i.e., 190 percent), abso-
lute move limits are used for small elements (namely, for gain clements less
than 1 move limits are sct to 100) during the unlinked iterations. In case 8 the
initial gain matrix is calculated by solving the full order Riccati equation with
weighting matrices [Q] = Diag [ [K], [M] ] and [R] = 3—(1)6-[1] . In case 9

the initial feedback gain matrix is obtained by solving 10 sets of 2 x 2 Riccati

cquations followed by three unlinked iterations to gencrate the startup matrix.

[teration histories and final structural dimensions are given in Tables 6-7
and Figures 5-6. All four cases converge to similar final mass values. For
comparison the results for cases 6-9 are summarized in Table 8 along with the
active constraints at the final design. In this example the final web thicknesses

in all cases take on their lower bound value (i.c. T3 = 0.5 ¢m, see Figure 6).

The results for cases 6-9 show that the initial gain matrix used to generate

a startup gain matrix (via three iterations without any CDYV linking) does not




have a significant effect on the final structural design or the minimum mass
values achieved. It is important to note that the method used in this section
can not be extended to larger problems because as the number of CDV’s in-
volved increases (i.e., according to number of CDV’s = M x 2N ), the three
totally unlinked optimization cycles required to generate the startup gain ma-

trix become intractable.

8.3 EXAMPLE 2 - ACOSS FOUR STRUCTURE: CDV LINKING (I)

The second example is the ACOSS FOUR structure shown in Figure 7.
Several studies have been made on this model (sce Refs. 11, 13-16, 18 and 19)
since it represents one of the simplest configurations for a 3 dimensional space
structure. It consists of twelve truss elements and has 12 degrees of freedom.
Nondimensionalized Young’s modulus and mass density arc 1 and 0.001 units,
respectively. The edges of this tetrahedral truss are 10 units long, and the six
supporting links are 2.83 units long. An actuator is located in each of the six
supporting links (clements 7 through 12) introducing control forces that act
along the supporting links, and 4 nonstructural masses of 2 units cach are at-
tached at nodes 1-4. The nodal coordinates are given in Table 9 (from Ref.

11).

The design objective is to minimize the structural mass satisfying given
behavior constraints on the closed-loop eigenvalues. Truss member areas are

the design variables and no structural linking scheme is used, therefore, the
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number of independent structural design variables is 12. Initial truss member
areas are given in Table 10 along with the final areas for all 4 cases. Lower
and upper limits on the areas are 10 and 1500, respectively. The most restric-
tive control design variable linking scheme (option number 10 of Table 2) is
chosen which leaves only one independent control design variable (elements of
the feedback gain matrix are all linked). Hybrid approximation in terms of
areas and linear approximation in terms of the control design variable are used
to construct a sequence of explicit approximate problems. DOT (Ref. 37) is

used as the optimizer.

[nitially two control feedback gain matrices (Initial Design A and B) are
found by solving full order and 2 x 2 Riccati cquations, respectively. Initial
design A is found by solving the full order Riccati equations with identity
weighting matrices for both states and control forces ([Q)= [U]n
[R] = [1]y sce Eq. (4.3)). In Tables Il and 12 initial feedback gains, natural
frequencics and closed-loop eigenvalues of the initial design A are given. Ini-
tial design B is obtained by solving 12 sets of 2 x 2 decoupled Riccati equations
for the initial control gains with identity control weighting matrix (
[R] =[]y or y/s=1), and diagonal 2 x 2 state weighting matrices ([Q;] =
Diag (w?, 1), i=1,..,12,see Eq. (4.21)). The normalizing constants d/'s for
the right hand eigenvectors (sce Eq. (5.8)) are chosen to be 1. Again in Tables
13 and 14 initial feedback gains, natural frequencies and closed-loop

eigenvalues are shown. In the following subsections 4 cases are investigated
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where different sets of behavior constraints and initial startup control gains are

used.

8.3.1 Inequality Constraints

In the first two cases, inequality behavior constraints are¢ imposed on the
first damping ratio (§, > 0.15), and first two damped frequencies (w,, > 1.341
and wn > 1.6, see Ref. 19). Cases 1 and 2 start from the same member areas
but different control gains, namely, from initial design A and B, respectively.
Move limits used for the structural variables are fixed at 50 percent, and for
the control variable the move limit is reduced by 70 percent after each iteration

starting from 70 percent (case 1) and 50 percent (case 2).

Final member arcas as well as the final value of the single control variable
arc given in Table 10. The value of the control design variable represents the
ratio of the final feedback gain elements with respect to the initial gain ele-
ments, so the actual final feedback gain matrix is the initial feedback gain
matrix multiplied by the final control design variable in each case. Natural
frequencies and closed-loop eigenvalues of the final designs are given in Tables
15 and 16. In both cases the two damped frequency constraints are active at
the final design but the first modal damping factor is not critical (i.c., case I,

0.16465 > 0.15 and case 2, 0.16745 > 0.15).

Iteration histories of cases I and 2 are similar to each other (see Table 19

and Figure 8). Total design masses include 8 units for the fixed nonstructural
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masses as well as the structural member masses. Final truss areas are shown

in Figure 10.

Cases 1 and 2 show similar area distributions and final mass values (see
Figure 10) even though the final control gains are different. The final struc-
tural masses obtained here (14.52 and 14.12, see Table 10) are lower than the
result reported in Ref. 19 (18.56) by more than 20 percent. This reduction in
the final mass can be attributed primarily to integration of the structural and
control design variables, even though the most restrictive control variable
linking option is used. It may be noted that less restrictive control design
variable linking options do not reduce the final mass much further in this ex-

ample.

8.3.2  Equality Constraints

The next two cases (cases 3 and 4) are similar to cases 1 and 2 but have
different behavior constraints. One inequality constraint and five equality
constraints arc imposed: the first 4 modes are constrained to have the same
damping ratios &, = 0.1093,i=1, ..., 4 ; and the first two damped frequencies

are constrained as follows, w, = 1.34 and w, > 1.5 (see Refs. 18 and 15).

Each equality constraint is replaced by 2 inequality constraints that define
a  small interval, namely 0.1093 < &, < 0.11,i=1,..,4 and

1.34 < w, < 1.345, resulting in 11 inequality constraints. Cases 3 and 4



start from initial design A and B, respectively, and both structural and control

design variables have 70 percent move limits.

Final designs, natural frequencies, closed-loop eigenvalues are given in
Tables 10, 17 and 18. All the constraints are satisfied with less than 0.5 per-

cent constraint violation.

[teration histories are shown in Table 19 and also in Figure 9. Final truss

areas are shown in Figure 10.

Cases 3 and 4 also show similar area distributions and final mass values
(see Figure 10). And the final structural masses obtained here (15.18 and
14.94, see Table 10) are lower than the results reported in in Ref. 18 (24.01)
by more than 35 percent. Between cases 3 and 4 it is seen that case 4 which
uses 2 x 2 Riccati equation solutions to generate the startup gains converges

much faster (see Figure 9).

8.4 EXAMPLE 3 - ANTENNA STRUCTURE: CDV LINKING )]

The third example is an antenna structure consisting of eight aluminium
beams (E = 7.3 x 106 N/em?, p = 2.77 x 10 kglem3, v = 0.325) which have
thin walled hollow box beam cross sections (see Figure 11). This structure is
constrained to move vertically (Y - direction) only, so each nodal point has 3
degrees of freedom (translation, bending and torsion) resulting in the total 18

degrees of freedom (N = 18). Four translational actuators (M = 4) weighing
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4 kg each are attached to nodes 3, 5, 6 and 7. These actuators are oriented so
that the force they generate acts in the vertical direction (degrees of freedom
4, 10, 13 and 16). Two ramp type transient loads are applied to the node 3
at the same time. One is a vertical force (f;(¢)) and the other is a torsional
moment (f, (¢)) with respect to finite elements 1 and 2 which gives anti sym-

metric exitation. These loads are given as follows:

fi(t) =3333¢t N, fo(r)=100xf(¢r) N-em

for 0 < ¢ < 0.3 seconds, and f, (t)=f,(t)=0 for t> 0.3 seconds (see Figure
[1). Transient responses are considered for the time interval 0 < t < 2 seconds
and 20 out of 36 complex modes are used to calculate the peak responsce values.
The normalizing constants d/s for the right hand cigenvectors (see Eq. (3.8))

are chosen to be 10°.

Flange and web thicknesses are constrained to be the same, so there are
three structural design variables for each finite element (B, Hand T=T2=T3,
sce Option 11 of Table 1). Structural linking is also used to make the structure
remain symmetric with respect to the XY plane, which results in the total 15
independent structural design variables. The initial structure is uniform (B
= H = 200 ¢m, T = 0.5 ¢m), and the side constraints are 10.0 em < B, H

<250cm,and 0.l em < T < 1.0 em.

Move limits of 30 percent for both structural variables and control vari-
ables are used. Behavior constraints are imposed on: (1) the real part of all the

retained complex modes (o; < —0.5); (2) the fourth and fifth damped fre-
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quencies (w, > 8.0 Hz, w, = 9.25 Hz); (3) the peak displacement of nodes
204, 5and 7 (1 ¢, ()| < 1.0 em, i = 1,7, 10 and 16); and (4) the peak actuator

force (|4 ()| < 8.5 N,j=1,2,3 and 4).

Initial feedback gains are computed by solving 10 sets of 2 x 2 Riccati
equations with the control weighting coefficients y;/s = 1/400 and the state
weighting matrices [Q;] = Diag (w?, 1 )i=1,...,10. In Figure 12, the initial
closed-loop eigenvalues ( 4;=0; + jw, ) obtained by solving 10 sets of 2 x 2
Riccati equations are compared with those obtained from a full order Riccati
equation solution (with weighting matrices [Q] = Diag [ [K], [M] ] and
(R] = -l—[[] , see Eq. (4.3)), and as can be seen from the plot, these two

400
solution methods give almost the same values for the lowest 10 modes.

Row-wise and column-wise control design variable linking schemes are
investigated for this example. The maximum number of control design vari-
ables is relatively large (M x 2N = 144). In this example since M = 4 rather
than unity, there exist [0 distinct control design variable options. Ten different
control design variable linking schemes (sce Table 2) are imposed on the the

same initial startup gains from the beginning.

[teration histories are shown in Table 20 and Figure 13 and final struc-
tural designs are given in Table 21 and Figure 14. Design masscs include the

fixed actuator mass (4 x 4 = 16 kg) as well as the variable structural mass.

As the freedom in the design space is reduced by imposing more restrictive

control design variable linking schemes (from case | to case 10), it can be

65



clearly seen from the results that: (1) the number of independent control var-
iables in the optimization loop decreases (from 144 to 1); (2) the optimum mass
increases (from 163.11 kg to 206.06 kg); (3) the total number of iterations de-

creases and the convergence becomes more robust.

Even though there is more than 20 percent of difference in the optimum
mass between case | and case 10, all cases show a similar trend in the final
structural design. Namely, widths and depths of finite elements 1, 2, 5 and 6
take on their upper bound values and thicknesses of clements 3, 4, 7, and 8

move to their lower bound values (see Table 21 and Figure 14).

Final mass values and active constraint sets for the final designs achieved
in cascs 1-10 are summarized in Table 22. In all cases damped frequency, peak

response and peak control force constraints are active.

This example problem investigates the effect of row-wise and column-wise
linking schemes on: (1) the minimum mass achievable; and (2) convergence
characteristics of the optimization procedure. Generally as more linking is
imposed, the final mass increases and the design converges faster and more
smoothly. In Figure 15 optimum masses are compared with the number of
independent control variables according to the distinct control design variable

linking options chosen.
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8.5 EXAMPLE 4 - ANTENNA STRUCTURE: CDV LINKING (II)

This example is the same as the previous example (Example 3) except that
here the block type control design variable linking schemes introduced in sec-

tion 4.4 are investigated.

8.5.1  Linking on [ H ]

Cases 1-10 select participation coefficients «;s of [H°]® (see Eq. (4.33))
as design variables. These «s are further linked so that in each case the
number of independent control design variables is different. The basic scheme
cmployed here is to treat the first (K — 1) variables «,, ... , a;_, as independent
and then link all the remaining variables oy = a4, , = -+ = 2, so that the total

number of independent control design variables after linking is K. For exam-

ple, when K=1 there is only one independent design variable after linking,
since oy = oy = -+ =05 . When K =2 there are two independent design vari-
ables after linking, namely «; and «, = ay=-+=a,, . Finally when K= 10

there will be ten independent design variables after linking, namely the partic-

ipation coefficients of the ten basis matrices in Eq. (4.33).

Iteration histories for cases 1-10 are given numerically in Table 23 and the
results for cases 1, 2, 4, 6 and 10 are presented graphically in Figure 16. Final

structural designs are displayed in Table 24 and in Figure 17.

67



8.5.2 Linking on [Hp] and [Hv]

Cases 11-20 are the same as cases 1-10 except that the position and ve-
locity parts of the gain matrix are separated. Namely, the «/s of both [H3J®
and [Ho]® (sce Eq. (4.34)) are candidates for design variables, so that the
maximum number of independent control design variables after linking is
doubled from 10 to 20. Iteration histories and final structural designs are

given in Tables 25-26 and Figures 18-19.

As the freedom in the design space is increased by choosing more inde-
pendent control design variables (from case | to case 10 and from case 11 to
20), it can be clearly seen from the results that the optimum mass decreases.
Table 27 summarizes the critical constraint sets ( —0.03 < G; < 0.0004) at the
final designs. The fourth damped frequency (w,) , the peak displacement at

node 7 (g,,) and the peak control force at node 7 (u,) are critical in all 20 cases.

[t is important to note that even with only one or two independent control
design variables (case | and case 11), the final objective mass values obtained
(206.06 kg and 204.16 kg) are about 15% lower than the result reported in
Ref. 25 (241.97 kg). This can be attributed to the fact that in Ref. 25 the
control gains are not independent design variables since, for any particular set
of structural design variables, they are determined from the solution of an

LQR subproblem.

In Figure 20 final masses are compared with the number of independent

control variables (case 1 of Example 3 which has 144 independent CDV’s is
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also shown as a reference solution). Compared to the results for Example 3,
based on the column-wise or row-wise linking schemes, the new block type
(basis matrix) linking method (see section 4.4) gives much better results, in the
sense that with the same or fewer independent control design variables signif-

icantly lower final design mass can be obtained (compare Figures 15 and 20).

8.6 EXAMPLE 5 - ANTENNA STRUCTURE: ADDITIONAL
PROBLEMS
In this section additional problems using the same antenna structure as
in Examples 3 and 4 are investigated. All the cases in this section use the same
startup gains and the same control design variable linking scheme as in case
10 of Example 4 (namely, startup gains are calculated by solving 10 sets of 2
x 2 Riccati equations and «,, ..., %, are independent CDV's, see Eq. (4.33))

except for some additional constraints and/or special features.

8.6.1 Additional Constraints

Three cases are considered which have additional behavior constraints.
Case | is identical to case 10 of Example 4 except that this case has an addi-
tional constraint on the control effort such that CE < 20 N2-sec. The 4 x 4
control weighting matrix [Reg] is chosen to be the identity matrix (sce Eq.
(3.21)). Case 2 is identical to case 10 of Example 4 except that in this case
additional constraints are imposed on the accelerations in the vertical direction

at nodes 2, 4, 5 and 7 (| a)t)| < 100 cm/ sec?, k = 1,7, 10 and 16). In case
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3 both control effort and acceleration constraints described above are imposed

at the same time, in addition to all the other constraints.

- Tteration histories and final structural dimensions are given numerically
in Tables 28-29. and displayed graphically in Figures 21 and 24. Table 36
shows final mass and critical constraint set results for these three cases. Final
mass values are increased compared with that for case 10 of Example 4 (170.92
kg) and this can be attributed primarily to the presence of additional behavior
constraints. It is interesting to note that in cases 2 and 3, where acceleration
constraints are considered and found active at the final design, a different type
of structural design is found, namély one where all the widths (B) take on their

upper bound values instead of the depths (H) (see Table 29. and Figure 24).

8.6.2  Updating Fixed Ratios and Truncation of the Gain Matrices

Cases 4 and 5 are the same as case 10 of Example 4 except that feedback
gain matrices are modified in order to update the fixed ratios (case 4) or to
prevent higher uncontrolled modes from being destabilized (case 5). In case 4
the fixed ratios built into the initial startup gain matrix arc updated by solving
2 x 2 Riccati equations again at the beginning of each iteration. When 2 x 2
Riccati cquations are re-solved, weighting matrices are adjusted such that the
real parts of the closed-loop cigcnvalues remain invariant between the updat-
ing (sce Appendix C). In case S components of the feedback gain matrix which
excite uncontrolled higher modes are eliminated by using the method presented

in Appendix D.
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[teration histories and final structural dimensions are given in Tables
30-31 and Figures 22 and 24. Final masses are similar to each other, differing
by less than 3 percent difference. In Table 32 the final closed-loop eigenvalues
arc compared with those of case 10 of Example 4. Most of the uncontrolled
higher modes (modes 11 to 18) are unstable in case 10 of Example 4, but in

cases 4 and 5 they are marginally stable.

8.6.3 Lumped Mass Design Elements

In this subsection the actuator mass constraints described in section 5.5
are included and actuator masses are treated as independent design variables
(i.c., variable lumped mass design elements). The exponent in Eq. (5.33) is set
to be unity (¢, = 1), namely, the relation between the peak control force and
the required actuator mass is assumed to be proportional with the coefficient

(:‘}.

Three runs are made with different values of ¢,. In case 6 the coefficient
¢, 1s chosen such that an actuator of 4 kg mass can produce control force of
8.5 N (ie., ¢, = 4 kg /8.5 N) to provide requirements similar to thosc in case
10 of Example 4, where constraints are given on the peak control forces (8.5
N) for the fixed mass actuators (4 kg). In case 7 more restrictive actuator mass
constraints are used such that actuators with 8 kg mass are needed to produce
control forces of 8.5 N (i.e., ¢, = 8 kg [ 8.5 N). And in case 8, ¢, is chosen such
that actuators of 2 kg mass are enough to generate control forces of 8.5 N (i.e.,

c,=2kg/85N).
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Iteration histories, final structural and actuator mass values are given in
Tables 33-35 and Figures 23-24. As expected, case 6 converged to a final de-
sign similar to that found in case 10 of Example 4, and cases 7 and 8 converged
to higher and lower final objective mass values, respectively, consistent with

the higher and lower values used for ¢;.

Final mass results for all the cases in this section are summarized along

with the active constraint sets in Table 36.

8.7 EXAMPLE 6 - GRILLAGE STRUCTURE: CDV LINKING (II)

The final example treated here is the 4 by 6 planar grillage structure (see
Figure 25) which was previously studied in Refs. 9 and 25. It consists of a
lattice of 10 aluminium frame members placed on 2 foot centers and
cantilevered from two fixed supports by 2 foot long flexible beams (E =
10.5 x 106 psi, p = 0.1 Ibjin®, v = 0.3). Each solid rectangular member is 2.0
in wide (fixed) and has an initial depth (variable) of 0.25 in. The members are
oriented so that the width dimensions lie in the plane of the structure (XZ
plane). The grillage is modelled using 40 finite elements each of which is 2 foot
long and the total number of degrees of freedom is 72 (3 per node at 24 nodes).
A small amount of passive damping (cy = 0, cx = 0.00005 , see Eq. (3.2)),
which gives passive damping ratios between 0.0059 % (Ist mode) and 0.36 %
(20th mode) to the uncontrolled initial structure, is assumed to exist. Four

torque actuators are placed to provide control torque in the directions as
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shown in Figure 25. The mass of each actuator (1.296 x 10-? Ib- sec?/in) is
modeclled as a fixed nonstructural mass. Initial control gains are obtained by
solving 25 sets of 2 x 2 decoupled Riccati equations with diagonal control
weighting matrices [R] = —Z!WDiag [2,2,1,1] and diagonal 2 x 2 state
weighting matrices [Q;] = Diag (w?, 1), i=1,...,25 (see Eq. (4.21)). Initial
open-loop and closed-loop eigenvalues are given in Table 37. Transient re-

sponses are considered for a time period 0 < ¢ < 3 seconds and the lowest 40

out of 144 complex modes are used.

The total mass is minimized and the grillage is subjected to a transient
loading at node 3 in the Y direction which is a half sine pulse of magnitude 0.2
Ib and frequency 7 rad/sec. Structural design variable linking is used to im-
pose symmetry with respect to the XY plane on the structure and as a result
there are 8 independent structural design variables (see Figure 25). Lower and
upper limits on the member depths are 0.1 and 1.0 in, respectively. In this
example behavior constraints are imposed on: (1) the modal damping factors
of the first 20 modes (¢, > 1%, i=1,...,20) ; (2) the transient displacements
at nodes 1-6, 7, 13, 19, 12, 18, and 24 in the Y - direction (i.e., () < 0.2 in);

and (3) the transicnt control torques of all actuators (u(¢) < 2.5 lb-in).

At the initial structural and control design, all the damping ratio and
control force constraints are satisfied, but transient displacement constraints
are infeasible by as much as 68 %. Hybrid approximation in terms of depths
of the members and linear approximation in terms of the control design vari-

ables are used to generate approximate optimization problems.
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In this example the number of elements in the feedback gain matrix is
very large (M x 2N = 4 x 2:72 = 576), so it is almost impossible to use all the
gain clements directly as independent design variables. Six cases are investi-
gated which are similar to cases 1-10 of Example 4, namely, the participation
coefficients a/s of [H°]® (see Eq. (4.33)) are control system design variables.
These a/s are further linked so that in each case the number of independent

control design variables is different (see Table 38).

[teration histories are given numerically in Table 40 and graphically in
Figure 26. Final member depths are given in Table 39 and Figure 27. In all
the cases depth of member 3 (node 13-18) has its lower bound value, and in
cases S and 6 depths of members 5 (node 1-19) and 10 (node 6-24) also have
lower bound values in addition to member 3. In Figure 28 final mass values
achieved in each of the six cases are compared with the number of independent
control design variables used. Similar observations to those made about pre-
vious examples can be made, namely, as the number of independent control
design variables is incrcased from | to 20, the final objective mass value de-
creases (from 0.1191 to 0.1039, a 12.8 % reduction), but the total number of
analyses required for the convergence tends to increase. The final closed-loop

complex eigenvalues and modal damping factors are given in Table 41.

In all the cases transient displacement constraints at node 1 and the
transient control force constraints on actuator 3 and 4 are active at the final

design in addition to the critical damping ratio constraints (noted in Table 41).
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Chapter IX

CONCLUSIONS AND RECOMMENDATIONS

9.1 CONCLUSIONS

A method has been presented to integrate the design space for
structural/control system optimization problems in the case of lincar state

feedback control.

When linear state feedback control is used in the integrated
structural/control optimization problem, the usual approach is to treat struc-
tural design variables as the only independent variables in the optimization
loop. The control gains are subordinated by using the solution to the lincar
optimal control problem to implicitly represent the “optimal” control gains
corresponding to any given set of structural design variables. In this approach
the control gains are in effect dependent variables that can be determined for
any particular structural “plant” once the state and control weighting matrices
are specified. In other words, there is no design space freedom on the control
syvstem design unless the state and control weighting matrices involve some
candidates for independent design variables which are free to change during
optimization. While some studies suggest to use coefficients of the weighting
matrices or control effort as independent design variables in optimization (sce
Refs. 22, 23), this is a rather indirect approach and it does not represent a truly

integrated formulation of the structural/control system optimization problem.
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The method presented here treats elements of the feedback gain matrix
directly as independent design variables together with the structural sizing
variables and actuator mass variables. In order to reduce the number of in-
dependent control design variables, the conventional structural design variable
linking idea is extended to the elements of the feedback gain matrix introduc-
ing scveral alternative linking schemes. Also a method for generating effective
initial startup control gains, which avoids the burden of solving the full order

Riccati equations (see Section 4.2), is presented.

The integrated structural/control system design problem is posed as a
general nonlinear mathematical programming problem. The objective is to
minimize the total mass of the integrated system. Constraints on dynamic
stability, damped frequency, control effort, peak transient displacement, ac-
ccleration and control force, and actuator mass are considered. By assuming
that the cxternal transient disturbances are represented in terms of a truncated
Fourier serics and polynomial terms, all the transient responses and their sen-

sitivities are derived explicitly in closed form.

The general optimization problem is solved through the iterative con-
struction and solution of a sequence of explicit approximate problems based
on various approximation concepts including new control design variable link-
ing schemes. Each approximate problem is solved using the feasible direction
method implemented in CONMIN (Ref. 36) or the modified feasible direction

method in DOT (Ref. 37).
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The methodology summarized in this report has been implemented in a
research computer program, and numerical results for several illustrative ex-
ample problems have been presented. The number of analyses required to
achieve convergence (based on a 0.1 percent objective function diminishing
returns criterion) in most example problems ranged from 8 to 20 and signif-
icant improvement in the final design objective function values have been

achieved compared to previously reported results.

The antenna example was particularly useful as a test-bed for examining
the alternative control design variable linking schemes introduced here, since
it involves multiple actuators and moderate model size. These results confirm
that providing more design freedom by increasing the number of independent
control design variables (after linking) makes it possible to achieve lower ob-
jective function values. The trade-off between reduced objective function value
and increased control variable design freedom is clearly illustrated in Figure
I5 (row-wise and column-wise CDV linking schems) and in Figure 20 (block
type CDV linking schemes). [t should be noted that as the number of inde-
pendent control variables increases, the number of analyses required for con-
vergence tends to increase.  Although the full extent of the benefit is problem
dependent, it is often possible to achieve significant reductions in the final ob-
jective function value by incorporating only a small number of independent

control design variables into the integrated design space.

The design variable linking idea has been successfully extended to inte-

grated structural/control optimization problems, based on full state linear
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fecdback control. In the context of this class of problems, design variable
linking makes it possible to treat structural design variables (SDV’s), actuator
mass variables and control design variables (CDV’s) simultaneously without
having to deal with prohibitively large numbers of design variables. Further-
more, the 2 x 2 decoupled Riccati equation solution method makes it possible
to obtain good startup values for the elements of the gain matrix without the
computational burden of having to solve a full order 2N x 2N) Riccat
equation. The method presented shows promise in the sense that it offers the
prospect of being able to exploit the benefits of full state feedback and true
integration without having to: (1) repecatedly solve large 2N x 2N Riccati
cquations; (2) deal with extremely large numbers of independent design vari-

ables.

9.2 RECOMMENDATIONS

The method presented in this work can be used to optimize frame/truss
structures augmented by a linear state feedback controller. While this work
represents an important step towards the goal of integrating the structural and
the control system design processes, several improvements and extensions can

be made which will lead to increased cfficiency and broader applicability.

Since the majority of the time for each design iteration lies in the analysis
(analysis and sensitivity analysis), reducing the total number of analyses re-

quired for the convergence will lead to significant reductions in the total cost.
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The key to fewer design iterations is the construction of more accurate ap-
proximate optimization problems so that larger move limits on the design var-
iables can be used during each stage. One way to improve the accuracy of the
approximations is to use intermediate response quantitics such as modal ener-
gies when constructing explicit approximations for the real (o) and imaginary

(w,) parts of complex eigenvalues (see Ref. 9).

Another important factor in the total cost of optimization is the time re-
quired for each analysis. If the order of the model is reduced by using appro-
priate basis vectors (for example natural modes of the structure), the analysis

cost can be significantly reduced.

Currently a full order finite element model of the structure is used for the
controller design (in other words, clements of the feedback gain matrix, [H],
are optimized in the physical coordinate system) assuming all the dynamic
displacements and velocities are directly available. However, for practical
purposcs an observer or a state estimator is required to reconstruct the state
values from the sensor outputs. When the observer is constructed for the full
order model the task is rather difficult, since it can increase the order of the
entire set of dynamic equations up to 4N. Once the original model is reduced
as mentioned above, building the observer becomes much more tractable.
When an observer is used, the same linking idea can be applied to the observer
gains. [t should be noted that when the observer gains are also used as inde-
pendent design variables, various linking schemes can be used for the observer

gains. Furthermore, it will be necessary to consider additional constraints, for
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example the real parts of the observer poles should have values that are more
negative than the real parts of the controller poles (this will make the estimator

errors decay faster than the controlled states).

In Appendix C a method is presented for updating the fixed ratios be-
tween gain matrix elements (associated with a particular linking scheme), while
constraining the real parts of the closed-loop eigenvalues (g/'s) to be unchanged
during the update. When modal damping ratios (£/s) are constrained rather

than o/s , the possibility of a similar updating scheme needs to be investigated.

Other areas for further investigation which will be important for the sol-
ution of more realistic problems include consideration of: (1) stress constraints
(both static and dynamic); (2) multiple loading conditions; (3) overdamped
modes (pure real closed-loop eigenvalues); (4) sensor;actuator location issues
and/or observability and controllability requirements; and (5) sensor/actuator

time delay ctfects.
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Appendix A

ELEMENT STIFFNESS AND MASS MATRICES FOR SPACE FRAME

ELEMENT

For a 3 dimensional frame element shown in Figure 1 the vector of the

c-th clement nodal degrees of freedom in the local coordinates is

e T
{a 3" = [up vy wiy 041, 0,1, 0,1, up, v, wy, 045, 6,5, 6,5]

(A.1)

where u, v, and w are displacements along X, y, and z axes, 6,, 6, and 6, are

rotations about x, y, and z axes, respectively, and subscripts I and 2 represent

cach end point | and 2. Then the element stiffness matrix is

A 0
121,

~|™

0 0 0 0 -4 0

0 0 0 6Ljl 0 -120)F

1207 0 -6Lj1 0 0 0
GJIE 0 0 0 0
a, 0 0 0
a, 0 6Ll
4 0
120,
Sym.
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0
0
- 121
0
61,1
0
0
0
12,

0 0 0
0 0 6l
0 -6/l 0
-GJIE 0 0
0 2, 0
0o 0 2,
0o 0 0
0 0 -6
0 6Ll 0
GIE 0 0
ar, o
4

2

(A4.2)




where E is the Young’'s modulus, G is the shear modulus, 4 is the area, [ is the
length, GJ is the torsional rigidity, and /, and /, are the arca moment of inertia
of the cross section with respect to the centroidal principal axes y and z, re-

spectively.

The element mass matrix is

140 0 O 0 0 60 70 0 0 0 0 0
156 0 0 0 220 0 54 0 0 0 13

156 0 -2 0 0 0 54 0 13 0
140[,;/4 0 0 0 0 0 70Lj4 0 0
2 0 0 0 -1 0 32 0
, 42 0 13 0 0 0 -37°
vy = 24 (4.3)

420 140 0 0 0 0 0
156 0 0 0 22

Sym. 156 0 220 0
1400,/4 0 0

a0

4

where p is the mass density and 7, is the polar arca moment of inertia of the

Cross section.
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Appendix B
SOLUTION OF 2 x 2 RICCATI EQUATION

Equation (4.23) can be written in equivalent form as

— —

. AC 0 .
P pi2|| O 1 0 —oi||rPil P2 on 0
i 2 + i | T i
P12 P2l @i — G L= ||Pi2 P2 0 O
(B.1)
[ i i1 1o i i
Pit P12 [0] | T PL1 P12
- ro |5l witt ]|, T = ol
|72 P ivid (1] P12 P2

where the 2 x 2 matrix [P] is positive definite (i.e., p{, >0, pi, >0 and

Py phy — (PP > 0) and @, 05, >0,y,> 0.

Since the above equation is symmetric, there are 3 independent scalar

cquations as follows:

- 5 .
Wipip)" + 2wippp — @) = 0 (B.2.a)
rd 1 2 [ /

Wi(py)” + 2¢p33 — Q3 — 2p3 = 0 (B.2.)
C o0 i i 2 i

Wipapp — P11+ GP12 + @ipp =10 (B.2.c)

where
; 1 T T

W = ),—I_{V,-} (61061 {v;} > 0 (B.3)
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From Eq. (B.2),

2 '3 o
—wp Voi + Wy

{
v,
2 i i
et N w0+ 2w,
pp = ———— W'.sz 212 (B.4.5)
{
R R
11 7 j
lVI L :
(B.4.)

Since pi, >0 and ¢;> 0 the minus sign in front of the square root in Eq.
(B.4.b) is dropped and since pi, > 0 the minus signs of Eq. (B.4.c) disappear

so that a unique solution for [ P;] can be determined as follows:

—wl + Jo! + W05
IV,

1

2 i i
: - ¢ + /c- + W.05 + 2W;p
p§2 = d N (=22 712 (B.5.b)

i

(B.5.c)

1 4 [ 2 [ 2 / 4 ]

{
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Appendix C
UPDATING FIXED RATIOS OF CONTROL GAINS

As mentioned in Section 4.2, solving for the initial feedback gain matrix
and imposing some kind of linking on the feedback gains fixes the relative va-
lues of those clements through the final stage. When the decoupled Riccati
equation solution method presented in subsection 4.2.2 is used, this problem

can be relaxed.

When the 2 x 2 Riccati equations are solved again for a different struc-
ture, there should be some rule to choose weighting matrices [Q;] and [R;] of
Eq. (4.21). Considering that the real parts of the cigenvalues ( ¢/s ) play an
important role on the dynamic responses as well as themselves are the behavior
constraints, the scheme presented here has focused on the continuity of the

o/s during the resolution of the feedback gain matrix.

First, the further assumption is made that the coupling effects of Eq.
(4.27) on the closed-loop eigenvalues are negligible. Then neglecting the right

hand side of Eq. (4.27), the i-th equation for the complex cigenvalue 4; becomes

Xiz + (c,- + lVipéz)li + (a),z + lVipf:z) =0 (C.1)
where
R AUTHCIG Y (€2)
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2 4 j
ply = o (C.3)

{

L o+ \/c,-2+ W, 0k — 2w? + 2 Jot + W00

i

Then the i-th closed-loop eigenvalue A, becomes (assuming underdamped mo-

tion)

_ (C,' + I/Vl-péz) + j\/4 ((1)12 + lVipiz)_ (Ci + lVip£2)2 (C.5)

2

From Eq. (C.2)-(C.5) noting that {v;}, [b], w? and ¢ are fixed for a given
structure, the complex cigenvalues 4; can be assigned arbitrarily by adjusting

I, , pi, and pi, or equivalently y;, Qi, and Q..

The ratio between the state weighting matrix [Q;] = Diag (Qi,, Q),) and
the control weighting matrix [R;] = y, [/] determines the relative magnitude
of states and control forces. This means that the ratio between [Q;] and [R;]
(or Q%,, @, and y)) will determine the damping cffect in the i-th mode, so by
changing only y; the real part of the closed-loop eigenvalue can be assigned

(within some bounds).

The foregoing observations suggest that for some iterations (for example
for every K iterations) the fixed ratios within the feedback gain matrix can be

updated by changing the y/s in a manner which forces the real part of the
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closed-loop cigenvalues to coincide with the approximate real part of the ei-

genvalues ( a/s ) from the previous iteration, i.e. from Eqs. (C.5) and (C.4)

i

2
(C.6)
1 2 i 2 4 B
or
= I 5 Of i i\2 4 i \2
W= —— (X +20n -2Jan X+ (20) + o (en)°) (©7
(02)
where

X = Qé?_ (43;2 + 20),-2 — c-z)

4

Then from Eq. (C.2)

= g ) w10 () | ()

With a new set of y/s the decoupled Riccati equations are solved again so
that the relative values of the elements in the gain matrix are updated accord-
ing to the changing structure prescrving continuity of the real parts of the
complex eigenvalues between the iterations. When all the y/s converge to the

previous values, this updating option can be turned off.
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Appendix D
ABOUT SPILLOVER EFFECT

In this appendix the existence of spillover effect (sce Ref. 38) of the for-
mulation used in this study is investigated. Consider Egs. (4.1) and (3.9) again

for convenience

[(M1{g} + [CY{q} + [K]{q} = [6]{u} (D.1)

!

(v} =— [H,1{q} — [H]{4q} (D.2)

The nodal degree of freedom vector, { ¢} , can be written without any trun-

cation as follows (compare with Eq. (4.9)):
{q} = Vcllzc} + Vydizy} (D.3)

where { z. } is the r x | controlled normal coordinate vector, [ V] is the Nxr
cigenmatrix consisting of the controlled r normal eigenvectors, { zy,} is the
(¥ —r)x | uncontrolled normal coordinate vector, and [V,] is the

N x (N — r) eigenmatrix corresponding to uncontrolled modes { z; } .

Eigenmatrices [ V] and [V,] in Eq. (D.3) can be normalized such that

v MIVA =00, [Vl IM1IV,] =[]

. L Ty - (D.4)
Vel tMI0V] =00}, [Vl (MIDV(] = [0]

and
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va'taitva =ted, ATtk = ad
A vy =1yl v KV = [Ay]

(D.5)

Substituting Eq. (D.3) into Eq. (D.1) and premultiplying by [V.]7 and [V,]T

results in
{Zc) + [Ccl{zc} + [Aclzc) = VT (6] (u) (D.6)
Liph + [l {zp} + Ayl {zp) = (V1T 0] () (D.7)

On the right hand side of Eq. (D.7), [Vy1T[6] # [0], which means there ex-

1sts control spillover.
Substituting Eq. (D.3) into Eq. (D.2) leads to

tud = = ((HIVA L zc b+ HITVA (3¢ })

(D.8)
= ([(HI WA 2y} + TH V1 {2y )

On the right hand side of Eq. (D.8), those matrices in front of the uncontrolled
modes are not zero (i.e., [H,1[V,] # [0], [H.,)] [Vy] # [0]) which can be

interpreted as observation spillover.

As can be seen from Egs. (D.7) and (D.8), there exist both control and
observation spillover. According to Ref. 38, the closed-loop system has po-
tential instability when the system has both observation and control spillover
and it is more important to eliminate observation spillover in order to avoid
instability. Therefore, the desired control input, {u"} , should contain only

controlled modes, { z- } , namely
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(u'}y =— HIVA {2} — [HIDVA L (D.9)

Premultiplying [ V17 [M] to Eq. (D.3) and using relations in Eq. (D.4) results

in
{zc} = Vel M1 (q) (D.10)
Substituting Eq. (D.10) into Eq. (D.9) gives

('} = HIVAAT M (g} - HIVATVA 114}

. . (D.11)
—— [H3{q} ~ (H1{4}

where

(H,] = [HA VA Vel M) (D.12)
and

(H] = [HIVA v M (D.13)

In summary, destabilization of uncontrolled higher modes can be pre-
vented by using the truncated feedback gain matrices shown above since these
matrices are orthogonal to the uncontrolled higher modes [V,] and will elimi-

nate observation spillover.
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Appendix E
CLOSED FORM SOLUTION OF TRANSIENT ANALYSIS

E. CLOSED FORM RESPONSE CALCULATION

Eq. (5.17) can be written in explicit closed form as

Ng Np
T
10 = (OLEL| ) UCHFCY, + ISg{FSY) + Y IP(FPY,
k=1 p=0
1 E.l
+ e*'n,(0) when 0 <t <4, (E.1)
ni(t) = e';"‘('_ 'f)n,-(tf) when t>ty
where
Ly (1—1)
IC, = J e cos QO 1 dr
i l ~ (E.2)
= —ﬁ<iie/‘f[ + Qp sinQ,t — 1; cos th)
b=
s, = j A sin Q 1 dr
’ | ) (E.3)
= 2‘2_<le-i‘ - Qk COSQ/([ — }'i sin le)
0} + A2
b=
IP, = J e i) 1P g (E.4)
0

When p = 0 (which corresponds to a step input),

95



t B
IPy = J M g = zL(ew - 1) (E.5)
. .

{

and when p = 1 (which corresponds to a ramp input),

t .
_ A (t—1) 1 1 it |
P, = j e Tdr = —(—e =t = —) (E.6)
0 T\ 7. 1.

i !

The above expressions can be derived by intcgration by parts. [t should be
noted that for a given set of design variables, 7, () needs to be calculated

only once and for ¢ > ¢, the second formula of Eq. (E.1) is used.

E.2 CLOSED FORM RESPONSE SENSITIVITY CALCULATION

Differentiating Eq. (E.1) with respect to o yields

&, a{y}
CIUA (———{‘f‘} E] + {w,-}T——a[E])
oo

ox Jda
ﬂVQ jVP
X Z (IC{FC}y + ISy {FS}y) + ZIPP{FP}p
k=1 p=0
+ v (B
N, N E7
ZQ: % (rc B (rs i o rp .
: G Ot = 1S + 2, = (TP
k=1 p=0
04, (0
+ —a'—te'{"ni(O) + e;""—j(_;:t—), when 0<t<tf
(¢ oA , ani(tr)
cni(f) — (¢ t)e;‘i({ ’f)n‘(t ) + eHilt w_1 4 , When >t
Juat Ja Vi
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where

6’[Ck . a {

e).l ([“T)

- cos), tdr
oo 30! 0 k

oA, [t .

= _aa’ J.o eAf(’—T)(z— 1) cos QT dt (E8)
a4, I , b

= thefil 4 et — cos Qut — 24;IC,
da f 4 ;2 ( ' ' )

cis t
koo 2| At gy Qrdr
dat da Jy

o4, rt
= 70% jo e~ 1) sinQ T dt (E.9)
(31,- 1 At
= — [le‘ - Sianf — 21[5/(
o 0F + a7 ( l )

t =T g

t .
= _Lf e"i("”(z—r)dz (E.10)
0

Jdu a 0

il
>~
.:ﬂ
T
-
e
~
X

. t
= —I-J e}”‘.(‘—r)(t—‘[)‘td't (E.11)
0

Again the above expressions can be derived using integration by parts.
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TABLE 1

Choice of Structural Design Variables

Option Design Linking within

Vanables an Flement

1 B and II NA

2 H B =al

3 B NA

4 H NA

5 B, I, T2 and T3 NA

6 T2 and T3 NA

7 T2 and T3 B =a«T3, H=8T2

8 T3 T2=aT3

9 T2 NA

10 T3 NA

11 B, Hand T3 T2=aT3

12 H, T2 and T3 B =aH

13 H and T3 B=aHT2=8T3

%, B : preassigned constants
: no linking within a cross section.

NA

n.b. :options 5-13 apply to the box beam type element only. (see Figure 1)
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TABLE 2

Control Design Variable Linking Options

Option Description Design No. of
Variables D.V.’s
| totally unlinked elements of [H] M x 2N
2 [H,] fixed, elements of [H,] M x N
[#,] unlinked
3 columns of [H] cocfficients of 2N
linked columns of [H]
4 [H,] fixed, coefficients of N
columns of [{{,] linked columns of [H,]
5 rows of [/1,] coeflicients of M
and [/{,] linked rows of [H,] and [#,]
6 rows of [ /] coefficients of M
linked rows of [H]
7 [H,] fixed, coefficients of M
rows ofp[H,] linked rows of { ]
8 (£, [H] coefficients of 2
linked (], [H.]
9 [f1,] fixed, coefficient of [#1,] 1
[H,] linked
10 [H] linked coefficient of [//] 1
[(H] M x 2N feedback gain matrix
[(H,] :position part of [H] (M x N)
[H] : velocity part of [H] (M x N )
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TABLE 3

Iteration History for Example 1: Cantilever Beam, Cases 1-5
Control Design Variable Linking (I)

Total Mass(kg)

Analysis Case | Case 2 Case 3 Case 4 Case 5
1 2141.6 2141.6 2141.6 2141.6 2141.6
2 1351.1 1352.1 1351.4 1453.5 1453.6
3 833.30 841.33 841.18 956.15 956.45
4 595.18 896.81 598.67 658.18 658.57
5 502.20 621.41 502.45 533.76 534.30
6 461.45 519.07 460.13 485.52 486.13
7 444.36 479.59 435.03 472.54 473.19
8 428.04 467.22 428.93 472.54 473.19
9 427.74 463.20 428.93 472.54 473.19
10 423.71 45593 428.93
11 423.70 454.28
12 423.67 454.18
13 453.07
14 452.20
15 451.95
16 451.94

TABLE 4

Final Cross Sectional Dimensions for Example 1: Cantilever Beam, Cases 1-5
Control Design Variable Linking (I)

Final Cross Sectional Dimensions(cm)

Case 1 Case 2 Case 3 Case 4 Case 5
T2 0.5046 0.6356 0.5290 0.7310 0.7340
T3 0.5000° 0.5000° 0.5000° 0.5000° 0.5000°

° indicates lower bound value
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TABLE 5

Summary of Example |: Cantilever Beam, Cases 1-5
Control Design Variable Linking (1)

Case |

Case 2

Case 3

Case 4

Case 5

Chv
Linking
Option*

No. of
Total
Analyses

Final
Active
Constraints

Number
of
CDhV

Final
Mass
(kg)

lor3

12

Wy q U

40

423.67

2ord

16

20

451.94

Sor8

Wy q U

428.93

T7or9

Oy Wy

6or 10

G Wy

473.19

*

. See Table 2
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TABLE 6

Iteration History for Example 1: Cantilever Beam, Cases 6-9
Different Initial Feedback Gains

Total Mass(kg)

Analysis Case 6 Case 7 Case 8 Case 9
| 21416 2141.6 21416 2141.6
2 1891.0 1433.9 21515 1559.4
3 927.12 1035.4 1644.0 1091.8
4 549.12 774.95 1170.6 780.60
5 512.22 595.87 836.46 582.35
6 465.22 491.20 622.14 456.71
7 437.93 458.57 489.56 435.84
8 429.40 431.84 444 44 428.09
9 429.40 431.84 434.64 427.81
10 429.40 43]1.84 434.64 428.63
11 434.64 428.63
12 428.63

TABLE 7

Final Cross Sectional Dimensions for Example 1: Cantilever Beam, Cases 6-9
Different Initial Feedback Gains

Final Cross Sectional Dimensions(cm)

Case 6 Case 7 Case 8 Case 9
T2 0.5311 0.5424 0.5554 0.5276
T3 0.5000° 0.5000° 0.5000° 0.5000°

@ indicates lower bound value
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TABLE 8

Summary of Example 1: Cantilever Beam, Cases 6-9

Different Initial Feedback Gains

Case 6

Case 7

Case 8 Case 9

Initial Gains
No. of
Unlinked

[terations

No. of
Total
Analyses

Final
Active
Constraints

Final
Mass
(kg)

(H]=[0]

10

Wy qu

429.40

direct output

10

w, qu

43].84

Full Riccati 2 x 2 Riccati

11 12

Oy Wy g U Wy qu

434.64 428.63
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TABLE 9

Nodal Point Coordinates for Example 2: ACOSS FOUR
Node X Y VA
1 0.0 0.0 8.165
2 -5.0 —2.8868 0.0
3 5.0 —2.8868 0.0
4 0.0 5.7735 0.0
5 —-6.0 —1.1547 -20
6 —40 —-4.6188 =20
7 4.0 —4.6188 =20
8 6.0 —1.1547 =20
9 =20 5.7735 -20
10 20 5.7735 -2.0

* . the origin (0,0,0) lies in the plane of nodes 2,3 and 4
(2 units shift in Z coordinate origin from Ref. 11)
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TABLE 10

Initial and Final Cross Sectional Areas of Truss Elements for Example 2:

ACOSS FOUR
Element Initial Final Final Final Final
(Nodes) A and B Case 1 Case 2 Case 3 Case 4
1(1-2) 1000. 258.2 251.7 258.6 290.4
2(2-3) 1000. 164.8 162.6 260.1 243.8
I(1-3 100. 153.3 149.3 168.5 134.9
4 (1-4) 100. 152.4 149.4 101.4 131.8
5(2-4) 1000. 165.8 162.6 243.5 245.0
6 (3-4) 1000. 282.8 274.5 291.2 286.9
7 (2-5) 100. 162.4 156.4 76.2 78.9
8 (2-6) 100. 161.6 156.5 137.9 728
9(3-7) 100. 102.9 82.0 110.3 98.4
10 (3-8) 100. 219.8 225.1 102.1 110.2
11 (4-9) 100. 103.8 81.9 94.2 99.6
12 (4-10) 100. 219.6 225.1 166.8 107.9
Structural 43.697 14.518 14.124 15.177 14.935
Mass
Control
Design 1.0 5.2283+ 2.8781*¢+ 2.9479* 1.5385+#
Variable
Number of
Analyses - 11 12 13 8
Required

* : represents the ratio of the final feedback gain with respect to

the initial gain of Design A (See Table 11)

** . represents the ratio of the final feedback gain with respect to

the initial gain of Design B (See Table 13)
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TABLE 11

Feedback Gains of Initial Design A for Example 2: ACOSS FOUR
(Feedback Gain Calculated by Solving Full Order Riccati Equations

with Weighting Matrices [Q] = [[],y and [R] = [1]))

Position Gains

Node Direction | Actuator 1 Actuator 2 Actuator 3 Actuator 4 Actuator 5 Actuator 6
X -0.17112 -0.15531 0.04389 -0.00572 0.01124 -0.02256
1 Y -0.08062 -0.10785 -0.01233 -0.02279 0.04415 0.00646
Z -0.23050 -0.23037 -0.00667 -0.15163 -0.00672 -0.15156
X 0.50329 0.35341 -0.26035 0.19237 -0.15928 0.15346
2 Y 0.11764 0.37713 -0.03369 0.06621 -0.20857 0.13342
Z 0.27425 0.27412 -0.14808 0.04077 -0.14804 0.04074
X -0.37381 -0.12643 0.07734 -0.17505 -0.02042 -0.01554
3 Y 0.21863 0.23719 0.14667 -0.09655 0.07495 -0.13230
Z 0.07594 0.03240 0.08307 0.05708 0.04116 -0.02841
X 0.14220 0.00236 0.05463 -0.12230 0.16562 -0.17110
4 Y -0.22824 -0.43309 -0.05519 0.05272 -0.00637 -0.10331
Z 0.03239 0.07595 0.04116 -0.02840 0.08307 0.05707
Velocity Gains
X 0.33432 -0.01836 -0.23952 -0.53569 0.34669 -0.30211
1 Y -0.21421 0.39664 0.53864 -0.03958 -0.47675 -0.44411
VA -0.19287 -0.19284 0.16896 0.08101 0.16895 0.08103
X 0.84740 -0.10095 0.01224 0.01220 0.12992 -0.09151
2 Y -0.60568 1.03660 0.14295 -0.11270 -0.06087 0.06691
Z 1.12920 1.12920 -0.01356 0.01441 -0.01355 0.01440
X -0.08273 -0.16078 0.47486 -0.52061 0.17640 -0.17019
3 Y -0.09619 0.20450 0.85744 -0.81356 0.05456 -0.05683
Z -0.00656 0.00742 0.84300 0.82788 0.01139 0.01026
X 0.09672 -0.12468 0.13546 -0.13433 0.97992 -0.96481
4 Y -0.24152 -0.02350 0.12552 -0.11899 -0.01753 -0.04402
Z 0.00741 -0.00656 0.01139 0.01026 0.84299 0.82788
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TABLE 12

Natural Frequencies, Closed-Loop Eigenvalues and Modal Damping Ratios
for Initial Design A in Example 2: ACOSS FOUR

Mode Natural Closed-loop Damping

Number Frequency Eigenvalue Ratio
(w?) (ctjw,) (9]

l 1.8010 —0.05196 1+ ) 1.34173 0.03869

2 2.7715 —0.07716 + j 1.66395 0.04632

3 8.3563 —0.15106 + j 2.88766 0.05224

4 8.7465 —0.16782 1+ j 2.95366 0.05673

5 11.548 —0.20178 4+ } 3.39314 0.05936

6 17.678 —0.25698 + ; 4.19752 0.06111

7 21.735 —0.25094 + j 4.65595 0.05382

8 22613 —0.24350 + j 4.74958 0.05120

9 72.923 —0.20643 + j 8.53709 0.02417
10 85.574 —0.19523 + j 9.24860 0.02110
11 105.78 —0.15129 + ;10.28381 0.01471
12 166.55 —0.05871 £ j12.90510 0.00455
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TABLE 13

Feedback Gains of Initial Design B for Example 2: ACOSS FOUR
(Feedback Gain Calculated by Solving 12 Sets of 2 x 2 Riccati Equations
with Weighting Matrices [Q;] = Diag (w?, 1) and [R]= [{]y)

Position Gains

Node Direction | Actuator |  Actuator 2 Actuator 3 Actuator 4 Actuator 5 Actuator 6
X -0.00027 -0.00040 -0.00009 -0.00015 0.00008 -0.00011
1 Y -0.00031 -0.00008 0.00015 -0.00004 -0.00015 -0.00011
Z -0.00078 -0.00078 -0.00005 0.00001 -0.00005 0.00001
X 0.17636 -0.17577 -0.00057 0.00059 -0.00008 0.00009
2 Y -0.30476 0.30509 0.00024 -0.00023 -0.00062 0.00063
Z 0.35224 0.35224 0.00014 -0.00019 0.00014 -0.00019
X -0.00044 0.00087 0.17609 -0.17614 -0.00008 0.00013
3 Y -0.00013 0.00026 0.30499 -0.30492 0.00070 -0.00069
Z -0.00003 -0.00003 0.35173 0.35169  0.00010 0.00006
X 0.00066 -0.00033 0.00057 -0.00053 0.35215 -0.35211
4 Y 0.00062 -0.00031 -0.00042 0.00046 -0.00001 -0.00007
Z -0.00003 -0.00003 0.00010 0.00006 0.35173 0.35169
Velocity Gains
X 0.48833 -0.05431 -0.35118 -0.87244 0.55421 -0.50961
1 Y -0.34465 0.59525 0.84274 -0.08477 -0.72551 -0.71314
Z -0.39794 -0.39787 0.30804 0.11272 0.30801 0.11277
X 1.63810 -0.19273 0.00299 0.07450 0.21374 -0.13354
2 Y -1.16800 2.00250 0.24509 -0.19719 -0.11992 0.16311
Z 2.18680 2.18680 -0.03887 0.05238 -0.03886 0.05237
X -0.22706 -0.30616 0.94046 -0.99591 0.30379 -0.29970
k) Y -0.16336 0.36588 1.64910 -1.58520 0.14310 -0.11673
Z 0.00539 0.00812 1.62040 1.59280 0.03972 0.01485
X 0.16378 -0.25501 0.27585 -0.25098 1.89820 -1.87060
4 Y -0.44813 -0.11487 0.19162 -0.20122 -0.01018 -0.06976
Z 0.00811 0.00541 0.03972 0.01484 1.62040 1.59280
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TABLE 14

Natural Frequencies, Closed-Loop Eigenvalues and Modal Damping Ratios
for Initial Design B in Example 2: ACOSS FOUR

Mode Natural Closed-loop Damping
Number Frequency Eigenvalue Ratio
(w?) (0 tjw,) ()

I 1.8010 —0.08264 + j 1.34786 0.06120

2 2.7715 —0.13181 £ j 1.67555 0.07843

3 8.3563 —0.28566 £ j 2.90017 0.09802

4 8.7465 —0.31846 + j 2.96470 0.10680

5 11.548 —0.38801 + j 3.40683 0.11316

6 17.678 —0.49915 4 4.20444 0.11789

7 21.735 —0.49119 + j 4.64576 0.10514

8 22613 —0.47814 + 1 4.72990 0.10058

9 72.923 —0.41002 + ; 8.50867 0.04813
10 85.574 —0.38734 £ j 9.21960 0.04198
Il 105.78 —0.30212 + ;10.26629 0.02942
12 166.55 —0.11446 + ;12.88505 0.00888
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TABLE 15

Natural Frequencies, Closed-Loop Eigenvalues and Modal Damping Ratios
for Final Design of Case | in Example 2: ACOSS FOUR

Mode Natural Closed-loop Damping
Number Frequency Eigenvalue Ratio
(w?) (0 tjw,) (4]
1 1.7917 —0.22511 % j 1.34857* 0.16465
2 2.5221 —0.16755 + j 1.59354* 0.10456
3 7.7894 —0.45422 + 7 2.90936 0.15426
4 8.3369 —0.17110 £ j 2.91693 0.05856
5 13.329 —0.26529 £ j 3.72512 0.07104
6 21.781 —1.31127 +  4.39815 0.28571
7 24.304 —1.06505 + j 4.73268 0.21955
8 33.428 —1.64435 4+ j 5.54856 0.28414
9 37.101 —0.32458 £+ j 6.05921 0.05349
10 44.278 —1.72945 + j 6.22344 0.26775
11 45.840 —1.47318 + | 6.40279 0.22423
12 48.746 —1.69234 + j 6.67545 0.24574

* - critical constraints
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TABLE 16

Natural Frequencies, Closed-Loop Eigenvalues and Modal Damping Ratios
for Final Design of Case 2 in Example 2: ACOSS FOUR

Mode Natural Closed-loop Damping
Number Frequency Eigenvalue Ratio
(@) (@ +jw) @)
1 1.6850 —0.22690 + j 1.33431+ 0.16764
2 2.4551 —0.15342 + ) 1.59436* 0.09579
3 . 6.8799 —0.62833 + ) 2.90255 0.21157
4 8. 1448 —0.16614 + ) 292190 0.05677
5 13.008 —0.25024 + j 3.71749 0.06716
6 18.175 —1.38884 + j 3.96390 0.33066
7 22,033 —1.09006 + j 4.23768 0.24912
S 32.395 —1.76219 + j 542404 0.30899
9 35.531 —0.21716 + j 596693 0.03637
10 44.649 ~1.92262 + j 6.05257 0.30275
11 44.946 —1.57552 + ] 6.45964 0.23696
12 49.007 - 1.81167 + | 6.66486 0.26231

* - critical constraints

111




TABLE 17

Natural Frequencics, Closed-Loop Eigenvalues and Modal Damping Ratios
for Final Design of Case 3 in Example 2: ACOSS FOUR

Mode Natural Closed-loop Damping
Number I'requency Eigenvalue Ratio
(w?) (0 £jw,) ()
1 1.7695 —0.14827 + j 1.33906* 0.11006*
2 2.2701 —0.16543 + ; 149824+ 0.10975*
3 6.8825 —0.29043 £ j 2.65129 0.10889*
4 8.3137 —0.32120 + j 291758 0.10943*
5 10.390 —0.25878 + j 3.22166 0.08007
6 18.333 —0.73126 + j 4.20431 0.17136
7 23871 —0.76931 + j 4.79604 ).15838
S 27.481 —0.52110 £ j 5.18450 (1.10001
9 32038 —0.73261 + j 5.5634 0.13056
10 34.259 —0.88063 + j 5.78363 0.15053
11 40.272 —0.88313 + j 6.20546 0.13892
12 47.972 —0.23151 £+ j 6.78034 0.03412

*+ . critical constraints




TABLE 18

Natural Frequencies, Closed-Loop Eigenvalues and Modal Damping Ratios
for Final Design of Case 4 in Example 2: ACOSS FOUR

Mode Natural Closed-loop Damping
Number Frequency Eigenvalue Ratio
(w?) (0 2jw) ()
1 1.7527 =0.14811 £+ j 1.33743* 0.11007+
2 2.1804 —0.16354 + j 1.49360* 0.10884+
3 6.7730 ~0.29237 £ ; 2.656M4 0.10940+*
4 7.5292 —0.30754 + ] 2.81009 0.10879+
5 3.8137 —0.41410 £ ; 3.02121 0.13579
6 16.516 =0.74291 + } 4.02792 0.18138
7 23311 ~0.77221 + 1 477106 0.15977
S 24.868 —0.69572 + | 4.96686 0.13872
9 27.885 —0.65279 + 5 5.20579 0.12442
[0 30.156 —0.78313 + j 5.34630 0.14493
[1 36.127 —0.76335 + | 5.85341 0.12932
12 47.773 —0.24766 + | 6.76245 0.03660

* . cntical constraints
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TABLE 19

Iteration History for Example 2: ACOSS FOUR, Cases -4

Total Mass(*)

Analysis Case 1 Case 2 Case 3 Case 4
1 51.6970 51.6970 51.6970 51.6970
2 45.2192 47.0839 50.0280 25.6928
3 40.5850 43,4828 33.0527 242318
4 29.9721 32.6651 316138 23.3435
5 23.9877 25.7153 28.1675 22.9081
6 22.8540 22.4004 26.2944 22,9354
7 22,5623 22.3012 25.0935 22,9354
3 22,4889 22.2166 24.1897 229354
9 225179 22,1845 23.6746

10 22,5179 22,1586 23.6389
11 22,5179 22,1404 23.1769
12 221236 23.1769
13 23.1769

+ - total mass includes 8 units of nonstructural mass in addition to structural mass.
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TABLE 20

Iteration History for Example 3: Antenna Structure, Cases 1-10
Control Design Variable Linking (I)

Total Mass(kg)

Analysis Case | Case 2 Case 3 Case 4 Case 5
(144%) (72% (36%) (18%) (8%
| 502.14 502.14 502.14 502.14 502.14
2 462.20 462.39 466.52 462.25 455.96
k! 34534 343,47 349.71 35113 359.45
4 254.17 259.92 261.19 263.19 283.10
5 213.91 218.31 235.33 230.47 231.57
6 184.11 191.87 210.26 213.59 212.83
7 174.34 176.98 199.19 200.50 204.21
8 168.93 170.94 192.61 195.82 200.82
9 169.35 167.01 193.88 194.60 198.91
10 165.61 166.99 190.74 192.95 198.71
1 164.42 165.43 188.11 191.28 198.45
12 164.08 165.03 185.03 189.94 198.01
t3 164.17 164.84 185.75 189.03 197.42
14 163.99 164.64 184.26 187.51 196.93
15 163.76 164.39 182.27 186.92 196.46
16 163.20 164.19 180.79 186.66 196.32
17 163.10 164.10 179.90 186.50 196.31
18 163.11 164.05 179.79 186.34
19 179.64
Analysis Case 6 Case 7 Case 8 Case 9 Case 10
(4 (4*) (2% (1*) (1%
1 502.14 3502.14 502.14 502.14 502.14
2 469.64 465.14 485.24 474,45 484.61
3 367.65 361.18 383.18 374.55 387.64
4 293.90 280.72 302.66 291.97 297.69
5 237.33 231.87 241.31 234.26 240.14
6 218.09 212.22 216.56 214.15 215.05
7 205.11 204.82 208.12 207.01 208.60
8 201.28 201.05 206.07 207.00 206.33
9 200.51 200.69 205.78 204.60 206.07
10 200.35 200.63 204.22 204.47 206.06
11 200.27 200.59 204.19 204.46 206.06
12 204.16

* - number of independent control design variables




TABLE 21

Final Cross Sectional Dimensions for Example 3: Antenna Structure, Cases 1-10
Control Design Variable Linking ()

I'inal Cross Sectional Dimensions(cm)

Case [:lement Element Element [lement Element
I 2 34 5,6 7,8
B 25.00° 25.00° 23.24 25.00° 19.31
I H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1000° 0.1108 0.1000° 0.1935 0.1000°
B 25.00° 25.00° 24.11 25.00° 18.68
2 H 25.00° 25.00° 25.00° 25.00° 24.99
T 0.1046 0.1129 0.1000° 0.1908 0.1000°
B 25.00° 25.00° 17.68 25.00° 18.87
3 H 25.00° 25.00° 24.41 25.00° 25.00°
T 0.1393 0.1263 0.1000° 0.2202 0.1000°
B 25.00° 25.00° 16.67 25.00° 18.56
4 H 25.00° 25.00° 21.92 25.00° 25.00°
T 0.1454 0.1213 0.1000° 0.2490 0.1000°
B 25.00° 25.00° 21.55 25.00° 13.82
5 H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1748 0.1152 0.1000° 0.2526 0.1000°
B 25.00° 25.00° 22.04 25.00° 10.84
6 H 25.00° 25.00° 25.00° 25.00° 24.83
T 0.2166 0.1496 0.1000° 0.2134 0.1000°
B 25.00° 25.00° 20.95 25.00° 12.08
7 H 25.00° 25.00° 25.00° 25.00° 24.86
T 0.2054 0.1360 0.1000° 0.2323 0.1000°
B 25.00° 25.00° 19.04 25.00° 14.43
S I 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1790 0.1115 0.1000° 0.2832 0.1000°
B 25.00° 25.00° 18.47 25.00° 14.50
9 H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1752 0.1129 0.1000° 0.2883 0.1000°
B 25.00° 25.00° 19.13 25.00° 15.80
10 1 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1904 0.1000° 0.1000° 0.2815 0.1000°

° indicates lower bound value b indicates upper bound value

116



Summary of Example 3: Antenna Structure, Cases 1-10

TABLE 22

Control Design Variable Linking (1)

Critical Constraints

Case Final Mass, kg Re(7) Imag (1) peak peak
Number(*) (*" displacement  control force

1(144) 163.11(18) O¢ Tho w,, Qs s U Wy U U,

2(72) 164.05(18) Wy, G0 Gis W ou Y,

3(36) 179.64(19) g, Wy, dio s U Uy Uy

4 (I8) 186.34(18) g, G W, Wy G Gis U Uy Uy U

5 (8) 196.31(17) Oy Oy Wy, Qo Grs U U U

6 (4) 200.27(11) Wy, dio G Uy Yy

7 (4) 200.59(11) Wy, q\s U Uy Uy

8 (2) 204.16(12) Wy, s uy U

9 (I 204.46(11) - Wy, Gis Uy U

10 (h 206.05(10) Wy, Go Gis Uy U

~number of independent control design variables

** . number of total analyses

17




TABLE 23

Iteration History for Example 4: Antenna Structure, Linking on [H]
Control Design Variable Linking (II)

Total Mass(kg)

Analysis Case 1 Case 2 Case 3 Casc 4 Case 5
(") (2%) (3% (4*) (5"

] 502.14 502.14 502.14 502.14 502.14
2 484.61 470.88 471.87 444,12 454.83
3 387.64 328.11 328.47 303.50 346.62
4 297.69 260.67 254.76 233.56 268.66
3 240.14 217.39 214.99 193.83 215.70
6 215.05 199.59 200.57 178.76 185.24
7 208.60 193.04 192.60 {74.18 175.46
3 206.33 191.20 190.47 173.05 176.56
9 206.07 190.90 190.23 172.50 173.25
10 206.06 190.80 190.14 172.46 172.66
11 206.06 190.70 189.94 172.46 172.46
12 189.85 172.37
13 189.81 172.32

Analysis Case 6 Case 7 Case 8 Case 9 Case 10

(6%) (7 (8%) 9" (10%)

1 502.14 502.14 502.14 502.14 502.14
2 453.14 449 .81 450.11 453.15 469.10
3 299.54 203.56 294.62 307.14 350.45
4 228.72 217.54 218.4] 228.31 268.09
5 187.80 184.73 180.21 188.59 215.51
6 175.65 176.29 174.64 175.95 181.84
7 173.27 173.07 174.70 173.41 173.50
8 172.41 172.28 174.38 172.68 171.19
9 172.29 171.93 173.93 171.10 171.02
10 172.17 171.80 171.27 170.84 170.96
11 171.73 170.97 170.70 170.92
12 170.84 170.65
13 170.81

+ - number of independent control design vanables
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TABLE 24

Final Cross Sectional Dimensions for Example 4:
Antenna Structure, Linking on [H], Control Design Variable Linking (I1)

Final Cross Sectional Dimensions(cm)

Case Element Element Element Element Element
1 2 34 5.6 7,8
B 25.00° 25.00° 19.62 25.00° 15.51
I H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1899 0.1000° 0.1000° 0.2816 0.1000°
B 25.00° 25.00° 19.78 25.00° 24.94
2 U 25.00° 25.00° 25.00° 23.05 22.23
T 0.1830 0.1326 0.1000° 0.2103 0.1000°
B 25.00° 25.00° 20.03 25.00° 22.86
3 H 25.00° 25.00° 25.00° 23.37 21.94
T 0.1869 0.1413 0.1000° 0.2012 0.1000°
B 25.00° 25.00° 20.90 25.00° 20.51
4 H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1000° 0.1000° 0.1000° 0.2356 0.1000°
B 25.00° 25.00° 18.85 25.00° 23.70
5 H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1025 0.1036 0.1000° 0.2287 0.1000°
B 25.00° 25.00° 18.72 25.00° 21.03
6 H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1000° 0.1107 0.1000° 0.2330 0.1000°
B 25.00° 25.00° - 17.65 25.00° 20.47
7 U 25.00° 25.00° 24.89 25.00° 25.00°
T 0.1000° 0.1165 0.1000° 0.2318 0.1000°
B 25.00° 25.00° 14.95 25.00° 23.42
s H 25.00° 25.00° 23.00 25.00° 25.00°
T 0.1073 0.1244 0.1000° 0.2203 0.1000°
B 25.00° 25.00° 14.62 25.00° 22.12
9 H 25.00° 25.00° 22.36 25.00° 25.00°
T 0.1013 0.1319 0.1000° 0.2267 0.1000°
B 25.00° 25.00° 19.96 25.00° 20.29
0 H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1000° 0.1058 0.1000° 0.2296 0.1000°
° indicates lower bound value ® indicates upper bound value
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Iteration History for Example 4: Antenna Structure,

TABLE 25

Linking on [H,] and [H,], Control Design Variable Linking (1)

Total Mass(kg)

Analysis Case 11 Case 12 Case 13 Case 14 Case 15
(2%) (+*) (6% (8%) (10%)
] 502.14 50214 502.14 502.14 502.14
2 485.24 182.76 462.89 420.35 470.72
3 383.18 34398 339.86 288.81 326.51
4 302.66 276.53 260.17 229.95 247.00
5 241.31 22543 22233 196.72 207.82
6 216.56 200.56 202.26 180.59 185.02
7 208.12 189.44 191.17 174.55 173.76
8 206.07 187.41 186.95 172.76 171.10
9 205.78 186.31 185.45 171.64 171.25
10 20422 185.54 183.60 170.30 170.49
11 204.19 185.21 [81.66 170.41 169.99
12 204.16 185.13 181.23 170.37 169.80
13 185.09 180.70 169.64
14 178.65 169.55
15 178.06
16 177.86
17 177.31
18 176.72
19 176.67
20 176.56

+ . number of independent control design variables
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TABLE 25

[teration History for Example 4: Antenna Structure,
Linking on [H,] and [H,], Control Design Variable Linking (II), Continued

Total Mass(kg)

Analysis Case 16 Case 17 Case 18 Case 19 Case 20
(12%) (14%) (16%) (18%) (20%)
i 502.14 502.14 502.14 502.14 502.14
2 475.80 474.66 474.47 466.40 434.64
3 301.89 304.10 304.66 304.00 287.18
4 228.23 230.32 231.61 226.62 22461
3 188.16 197.86 197.41 185.11 183.32
6 175.46 178.77 178.20 174.03 172.69
7 174.21 172.28 172.25 172.93 171.31
S 173.71 171.81 171.09 172.39 169.42
9 172.95 169.76 170.49 172.02 166.81
10 171.19 171.33 170.21 171.80 166.79
11 170.91 170.02 169.72 170.04 166.22
12 170.69 169.07 169.16 169.67 165.66
13 169.68 167.59 167.78 169.37 165.61
14 169.49 [66.91 167.26 169.17 166.50
) 168.38 166.23 167.00 168.92 165.30
16 167.40 166.17 166.65 167.74 165.14
17 167.01 166.01 166.29 166.91 164.95
18 166.85 165.69 165.84 164.86
19 166.76 165.46 165.64 [64.80
20 165.34 165.49
21 165.29 165.38

* : number of independent control design variables



Final Cross Sectional Dimensions for Example 4:

TABLE 26

Linking on [H,] and [#,], Control Design Variable Linking (I1)

IFinal Cross Sectional Dimensions(cm)

Case I:lement Flement Flement Element Element
1 2 34 5,6 7.8

B 25.00° 25.00° 18.99 25.00° 14.13

11 H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1777 0.1149 0.1000° 0.2835 0.1000°

B 25.000 25.00° 19.57 25.000 25.00°

12 H 25.000 25.00° 25.00° 22.84 22.14
T 0.1687 0.1361 0.1000° 0.2032 0.1000°

B 25.00° 25.00° 13.22 25.00 25.00°

13 11 25.00° 25.00° 25.00° 23.70 24.65
T 0.1239 0.1259 0.1000° 0.2271 0.1000°

B 25.00° 25.00° 22.11 25.00° 20.00

14 H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1000° 0.1021 0.1000° 0.2256 0.1000°

B 25.00° 25.00° 19.45 25.00° 21.32

15 H 25.00° 25.00° 24.70 25.000 25.00°
T 0.1000° 0.1051 0.1000° 0.2246 0.1000°

B 25.00° 25.00° 13.02 25.00° 24.32

16 1 25.00° 25.00° 24.12 24.93 25.00°
T 0.1000° 0.1341 0.1000° 0.2082 0.1000°

B 25.00° 25.00° 13.64 25.00° 24.70
17 25.00° 25.00° 24.06 25.00° 25.00°
T 0.1000° 0.1289 0.1000° 0.2061 0.1000°

B 25.00% 25.00® 15.33 25.00° 25.00°

I8 H 25.00° 25.00° 23.14 25.00® 25.00°
T 0.1000° 0.1213 0.1000° 0.2047 0.1000°

B 25.00° 25.00° 14.99 25.00° 24.29

19 H 25.00° 25.00° 23.31 25.00® 25.00°
T 0.1000° 0.1186 0.1000° 0.2084 0.1000°

B 25.00° 25.00° 14.91 25.00% 24.62
20 H 25.00° 25.00° 2293 25.00° 25.00°
T 0.1000° 0.1205 0.1000° 0.2054 0.1000°

9 indicates lower bound value

® indicates upper bound value




TABLE 27

Summary of Example 4: Antenna Structure, Cases 1-20
Control Design Variable Linking (I1)

Cnritical Constraints
Case Final Mass, kg Re(4) Imag (2) peak peak
Number(*) (**) displacement  control force

(D 206.06(11) - Wy, Gis U
2(2) 190.70(11) G5 O, Wy, Wy e A
3(3) 189.81(13) T,0,0, Wy, Wy 416 U,
14 172.46(11) 0y 0, Oy Wy, Gis Uy
5(5) 172.32(13) 0,G,0, Wy, e U,

6 (5) 172.17(10) gy Wy, e U
7(7) 171.73(11) Ty w,, e uy U,
S (S 170.81(13) ay Wy, Wy s Uy u,
9(9) 170.77(12) . 0y Wy, Wy Qs Uy U
10(10) 170.92(11) - Wy, s Uy U,
11 (2) 204.16(12) - Wy, die Uy U,
12(4) 185.09(13) g, g, Wy Oy Gis u,

13 (6) 176.56(20) G, Gy Oy Wy, Wy Gis A
14(8) 170.37(12) : Ty @y, i A
15(10) 169.55(14) T, Gy Wy, dis U
16(12) 166.76(19) oy 0, dy Wy, Wy d1s Uy U
[7(14) 166.01(17) o, g, Wy, Wy Qs Uy U,
18(16) 165.29(21) g, Wy, Wy s U Uy U,
19(18) 165.38(21) O, 0, dg Wy, Wy e U Y
20(20) 164.80(19) a, ¢, W4y Wy e W U U

: number of independent control design variables
** . number of total analyses




TABLE 28

lteration History for Example 5: Antenna Structure, Additional Constraints

Total Mass(kg)

Analysis Case 1 Case 2 Case 3
Control Effort Acceleration Control Effort
Constraint Constraints & Acceleration
Constraints

1 502.14 502.14 502.14
2 475.98 446.92 476.33
k) 369.44 345.03 375.87
4 281.91 305.57 309.06
5 242.58 286.80 286.28
6 222.34 277.24 276.98
7 21691 276.31 273.76
8 215.93 276.01 273.24
9 214.42 275.55 27295
10 213.99 275.23 272.72
11 213.71 27491 271.76
12 274.60 270.65
13 27445 270.50
14 274.06 270.44
15 268.62 270.38
16 268.38
17 268.03
18 267.94
19 267.88




TABLE 29

Final Cross Sectional Dimensions for Example 5:
Antenna Structure, Additional Constraints

Final Cross Sectional Dimensions(cm)

Case Element Element Element Element Element
I 2 34 5.6 78
B 25.00° 25.00° 16.94 25.00° 18.55
I H 25.00° 25.00* 25.00° 25.00° 25.00°
T 0.2476 0.1027 0.1000° 0.2452 0.1000°
B 25.00° 25.00° 25.00° 25.00° 25.00°
2 H 22.50 22.56 25.00° 23.92 22.40
T 0.2935 0.2656 0.2432 0.1255 0.1552
B 25.00° 25.00° 25.00° 25.00° 25.00°
3 H 25.00° 22.15 25.00® 24.11 22.41
T 0.2841 0.2793 0.2405 0.1278 0.1532
* indicates lower bound value ® indicates upper bound value




TABLE 30

lteration History for Example 5: Antenna Structure
Re-solving 2 x 2 Riccati Equations and Truncation of Gain Matrix

Total Mass(kg)

Analysis Case 4 Case 5
Re-solving 2 x 2 Truncation

Riccati Equations of Gain Matnx
1 502.14 502.14
2 469.10 469.10
3 366.71 35041
4 28145 268.57
5 220.83 214.43
6 190.46 181.03
7 177.59 172.36
8 174.16 170.64
9 174.02 171.37
10 175.31 171.25
11 175.05 170.89
12 174.96 170.85
13 174.79 170.72
14 174.77 170.71
15 174.74 170.69




TABLE 31

Final Cross Sectional Dimensions for Example 5:
Re-solving 2 x 2 Riccati Equations and Truncation of Gain Matrix

Final Cross Sectional Dimensions(cm)

Case Element Element Element Element [-lement
1 2 34 5,6 7.8

B 25.000 25.00° 16.58 25.00° 23.67
4 H 25.00® 25.00° 24.63 25.00® 25.00%
T 0.1025 0.1000° 0.1000° 0.2446 0.1000°

B 25.00° 25.00® 18.71 25.00° 23.11
51 25.000 25.000 24.33 25.000 25.00°
T 0.1000° 0.1000° 0.1000° 0.2296 0.1000°

* indicates lower bound value

® indicates upper bound value




TABLE 32

Final Closed-Loop Eigenvalues for Example 5:
Re-solving 2 x 2 Riccati Equations and Truncation of Gain Matrix

}'1 = 0’1 +jwd| (iu O/D)

Mode Case 10 Casc 4 Case 5
Number of Example 4 Re-solving 2 x 2 Truncation

Riccati Equations of Gain Matnx

1 273+ 161 —-252+71224 -277+j1.56

2 —186+ (497 —1.54 + j 5.01 —1.20 + j 5.04

3 —.683 +23.7 —.504 + 237 —-.739 4+ 236

4 —.519 43 50.1 —.499 + j 50.1 —-.528 £ 50.1

3 —.866 + 647 —.505 +j 63.1 -.906 + 1632

6 —1.08 +§103. —.846 +j 102. —-1.34 + 5 102

7 —933 4+ 184, —647 4§ 184, 507 +j 184,

8 — 623 4§ 241 —.501 + j 238. — 514+ 238

9 ~2.50 +  320. 938 4319 —298 + j 320.

10 225+ 324, —1.40 + j 325. —172 4+ 34,

11 977 + 3 428. —.353 x 1072 £ 1 428, 10 % 1073 + 5 427.

12 076 £ 619. A27 x 1072 + 3 617. — 462 x 1076 + | 618.

13 183 + 3 637. —.227 x 1072 +  627. —.387 x 107* £ ] 626.

14 203 + j 681. — 425 x 1072 1 | 684. 395 x 107% £ j 681.

15 121+ 1015 —313 x 1073 + 5 995. 438 % 1077 + j 1000.

16 —.121 £ 1128, A3 < 10724 1124 —.670 x 1075 + j 1121,

17 504 + 5 1268. 245 x 1073 £ 1294, 287 x 1078 + 3 1286.

18 339 + 5 1375, —.378 x 1072 + j 1380. 971 x 107" £ 1378.




TABLE 33

Itecration History for Example 5: Antenna Structure
Variable Mass Design Elements

Total Mass(kg)

Analysis Case 6 Case 7 Case 8
c=4kg/85N c=8kg/85SN c=2kg/85N

1 502.14 502.14 502.14
2 476.98 476.82 465.89
3 354.56 364.94 336.41
4 270.96 293.55 259.58
5 21392 233.84 210.89
6 184.34 193.69 178.03
7 173.01 182.61 168.24
8 17114 183.93 167.14
9 170.62 181.46 166.37
10 170.34 180.47 165.27
I 170.23 180.39 165.13
12 170.17 180.37 165.03
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TABLE 34

Final Cross Sectional Dimensions for Example 5: Antenna Structurce

Variable Mass Design Elements

I'inal Cross Sectional Dimensions(cm)

Case Element Flement Element Element Ilement
1 2 3.4 5.6 78
B 25.00° 25.00° 18.26 25.000 22.80
6 H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.100¢° 0.1000° 0.1000° 0.2330 0.1000°
B 25.00° 25.00° 25.00° 25.00° 25.00°
7 H 25.00° 25.00° 25.00° 25.00° 25.00°
T 0.1000° 0.1580 0.1000° 0.1728 0.1000°
B 25.00° 25.00° 13.98 25.00° 21.38
8 H 25.00° 25.00° 2228 25.00® 25.00°
T 0.1191 0.100¢° 0.1000° 0.2382 0.1000°
¢ indicates lower bound valuc b indicates upper bound value
TABLE 33

Final Actuator Masses for Example 5: Antenna Structure

Variable Mass Design Elements

Actuator Mass(kg)

Actuator Case 6 Case 7 Case 8
Number c,=4kg]8SN c,=8%kg/85N c=2kg[85N
1 2.700 4.641 1.489
Jand 4 4.006 7.958 2.001
3 3.920 7.773 1.974




Summary of Example 5: Antenna Structure, Cases 1-8

TABLE 36

Additional Problems

Cntical Constraints

Case Final Mass, kg Re(2) Imag (1) peak peak additional
Number (*" displacement  control force
Case 10
of 170.92(1]) - w, s U U, NA
I xample 4

] 213.71(1D g5 0, J Wy, G0 96 - CE
2 267.88(19) gy Wy, Wy, e W, u U, &
R 270.38(15) gy oy Wy, Wy G - CE g,
4 174.7415) |0y 0, a5 ay W, s Uy NA
h 170.69(15) g- g4 Wy, s Uy U, NA
6 170.17(12) W, s Uy U, m,
7 180.37(12) |0y 0, 0, 04 Wy, Wy s Uy 1 my
S 165.03(12) g, Wy, s uy U, m,

** number of total analyses
N not applicable




TABLE 37

’-‘1 = o’: +j(‘o.il (:n 0/0)

[nitial Complex Eigenvalues, Grillage Structure

Mode Open-Loop Closed-Loop
Number
1 —.0001 + 3 2.29 (.006) —.874 47231 (354
2 —.001 +7.05(.018) — 431 +j 7.06 (6.09)
3 — 007 +j 164 (.041]) —1.87 £ 1173 (10.8)
4 —.009 £} 18.6 (.047) —-.762 + j 17.6 (4.33)
5 —.018 + 3 27.1 (.069) —1.36 + 3 27.2 (5.00)
6 —.039 + 7 39.5 (.099) —.878 + 7 39.9 (2.20)
7 —.040 + 7 39.9 (.100) —2.00 £ ;40.1 (4.97)
8 — 062+ 749.7 (129 —3.76+ 1492 (7.64)
9 — 091 + j 60.2 (.150) —1.90 + j 60.1 (3.15)
10 - 119+ 3689 (.172) =201 £769.0(2.92)
11 — 135+ 73.6 (.184) 2,58 + § 74.0 (3.49)
12 — 1464 ] 76.5 (191 —840 4§ 75.6 (1.11)
13 231 + j 96.0 (.240) —2.03 958 (2.11)
14 — 267+ 103, (:259) —~1.39 + j 103. (1.35)
15 — 281 4+ 7 106. (.265) —2.26+106.(2.13)
16 — 3164 112.(.281) Z1dL 4§ 112.(1.26)
17 —.333 £ 119. (.297) =204+ 119.(L.72)
18 — 313+ 129, (.32]) —1.66 +j 128. (1.29)
19 —.505 4+ j 142.(.355) —2.81 £ 142, (1.98)
20 — 524 4§ 145.(.362) 165+ 145 (1.14)
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TABLE 38

Independent Control Design Variables, Grillage Structure

Case | Case 2 Case 3 Case 4 Case 5 Case 6
CDV's |ay= = 24 2y, 2y, Ay, Ay oey Agy %yy ey Ay, Ayy ey Oygy
== A == Uy Ag= =Wy Ayg =0 = Apyg Ly = = Uy
Number
of Indep. ] 2 3 5 10 20
CDV’s
TABLE 39
Final Structural Variables, Grillage Structure
Depths (em)
Design
Vanable Case | Case 2 Case 3 Case 4 Case 5 Case 6
Number
1 0.2849 0.2768 0.2510 0.2392 0.2557 0.2466
2 0.1698 0.1806 0.1936 0.1985 0.1191 0.1125
3 0.1000° 0.1000° 0.1000° 0.1000° 0.1000° 0.1000°
4 0.1953 0.1973 0.1769 0.1788 0.1908 0.1560
5 0.1502 0.1479 0.1429 0.1373 0.1000° 0.1000°
6 0.3656 0.3626 0.3670 0.3691 0.3701 0.4128
7 0.2299 0.2180 0.2221 0.2222 0.1622 0.1137
8 0.4724 0.5021 0.4951 0.4719 0.5880 0.5573

° indicates lower bound value
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TABLE 40

Iteration Historics, Grillage Structure

Total Mass (Ib- sec?/in)

Analysis Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
(1) (2%) (3% (5% (10%) (20%)
| 0.1294 0.1294 0.1294 0.1294 0.1294 0.1294
2 0.1448 0.1433 0.1440 0.1442 0.1442 0.1468
3 0.1332 0.1327 0.1369 0.1353 0.1352 0.1366
4 0.1272 0.1295 0.1317 0.1258 0.1261 0.1298
5 0.1231 0.1256 0.1238 0.1222 0.1257 0.1223
6 0.1211 0.1247 0.1206 0.1212 0.1215 0.1168
7 0.1211 (.1200 0.1185 0.1197 0.1182 0.1163
8 0.1198 0.1189 0.1172 0.1178 0.1170 0.1139
9 0.1192 0.1189 0.1166 0.1170 0.1145 0.1114
10 0.1192 0.1188 0.1172 0.1174 0.1136 0.1103
11 0.1194 0.1173 0.1173 0.1126 0.1103
12 0.1191 01172 0.1171 0.1111  0.1089
13 0.1191 0.1177 0.1162 0.1107 0.1088
14 0.1173 0.1162 0.1 0.1080
15 0.1168 0.1162 0.1099 0.1065
16 0.1170 0.1159 0.1098 0.1053
17 0.1169 0.1158 0.1098 0.1047
18 0.1169 0.1159 0.1093 0.1044
19 0.1160 0.1091 0.1039
20 0.1158 0.1091 0.1036
21 0.1157 0.1093 0.1042
2 0.1157 0.1083 0.1041
23 0.1080 0.1040
4 0.1082 0.1039
25 0.1083
26 0.1082
27 0.1083

* : number of independent control design vanables
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TABLE 41

Final Closed-Loop Eigenvalues, Grillage Structure

/-'l = Ul +j(“udn (:n 0/0)

Mode
Number

Case |

Case 2

Case 3

18
19
20

—1.58 + j 4.85 (30.9)
— 438 4} 9.76 (4.49)
—2.26 4§ 204 (11.0)
~1.53+j 24.7 (6.17)
—2.53 + ] 30.5 (8.26)
— 415+ j 38.9 (1.06)
—2.24 + j 40.1 (5.59)
—1.36 + j 50.7 (2.68)
—15.4 4+ j 51.7 (28.6)
—249 4 55.1 (4.51)
—114 4§ 624 (1.83)
— 634+ 63.3 (1.00%)
—~3.38 4§ 741 (4.55)
— 944 +j 93.1 (1.01*%)
~17.5+]97.6 (17.7)
—2.26 4+ 104, (2.16)
—3.28 4+ 105. (3.12)
~2.67 +j 106. (2.51)
—1.21 4+ 120. (1.01%)
—1.43 4 142.(1.01%)

—1.62 + j 5.03 (30.7)
—.321 4 9.93 (3.23)
—1.75 +§ 20.4 (8.53)
—1.08 + j 25.4 (4.29)
—2.08 + j 31.0 (6.70)
— 404 + j 39.6 (1.02%)
~1.96 + j 39.9 (4.91)
—1.87 +j 51.5 (3.63)
—10.9 +j 53.2(20.1)
—1.98 + j 549 (3.60)
—674 4 | 63.6 (1.06)
—.638 +j 63.9 (1.00%)
~2.56 4 | 75.0 (3.40)
— 934 4+ {91.7 (1.02%)
—11.8 4} 100. (11.7)
—2.88 + i 101. (2.85)
—4.61 + j 105. (4.40)
—1.08 + j 105. (1.03%)
—124 4 121 (1.03%
—1.49 + j 140. (1.06)

—1.89 4} 5.14 (34.9)
—.103 + j 9.90 (1.04)
—2.36 + 200 (11.7)
~2.10 + j 24.7 (8.50)
~2.58 + j 29.9 (8.58)
— 423 4} 38.7 (1.09)
—2.62 + j 39.2 (6.66)
—15.5 4} 47.9 (30.7)
—2.44 4§ 51.2(4.75)
~3.014 £ 52.3(5.99)
~.995 + j 62.3 (1.60)
— 625+ j 62.3 (1.00%)
~2.54 4§ 74.0 (3.42)
—.975 + | 88.5 (1.10)
—20.7 4} 95.4 (21.2)
~3.96 + j 99.3 (3.99)
~2.13 47 99.9 (2.13)
~1.04 + j 101. (1.03%)
—1.20 + j 119, (1.01%)
—1.36 4 j 135. (1.00%)

* indicate critical damping ratio constraints (0.999 < ¢, < 1.03)




TABLE 41

Final Closed-Loop Eigenvalues, Grillage Structure, Continued

,.‘1 = 0: +jwd: (é[' 0/;})

Mode
Number

Case 4

Case §

Case 6

ol e B R R S P R

— O

t

N = e Y

~J

18
19
20

~2.08 4 j 5.19 37.1)
— 100 + j 9.76 (1.02%)
—10.4 +j 19.9 (46.2)
— 144 +§ 22.0 (6.55)
—2.71 4§ 30.0 (9.01)
— 384+ §38.1 (1.01%)
—2.01 + j 38.8 (5.19)
—13.7+ j 483 (27.2)
—2.24 4§ 50.5 (4.42)
—3.07 + | 51.7 (5.92)
~ 627+ j 61.8 (1.02%)
~ 048 4§ 62.7 (1.51)
—2.23 4§ 72.7 (3.06)
— 881 + j 86.6 (1.02%)
~19.4 4§ 96.7 (19.7)
2124 97.2(2.19)
—3.81 + j 98.4 (3.87)
986 + j 98.7 (1.00%)
—1.19 4 117. (1.01%
— 140 + j 135. (1.04)

—2.224592(35.1)
—.115 4§ 10.5 (1.09)
—1.16 + § 22.2(5.21)
—4.02 +22.6 (1.5
—1.92 + j 28.6 (6.70)
~.397 4§ 37.0 (1.07)
~1.27 + j 38.6 (3.30)
—12.0 + ] 45.8 (25.4)
—.534 4 48.3(1.10)
~ 615+ j 48.7 (1.26)

—.525 4§ 52.2(1.00%)

— 648 + j 56.1 (1.15)
—3.55 + ] 65.0 (5.45)

—.749 £ 1727 (1.03%)

~2.08 + j 77.5 (2.68)
—2.63 +j79.0 (3.32)
—12.6 + j 85.6 (14.5)
~1.62 4} 99.0 (1.63)
—2.36 + j 110. (2.15)

—1.33 + j 133. (1.00%)

~1.85+ j 6.56 (27.1)
— 112+ 10.7 (1.05)
—.209 + j 20.3 (1.03%)
—6.55 + j 22.2 (28.3)
— 724 4§ 262 (2.77)
— 114+ 35.1(30.9)
— 605+ j 35.4 (1.71)
~.397 + j 37.3 (1.07)
— 666 + j 44.3 (1.50)
— 479 4 j 47.9 (1.00%)
~ 496 + j 48.4 (1.02%)
~ 539 + j 52.8 (1.02%)
~1.93 + j 54.6 (3.54)
~3.35 4+ 66.1 (5.06)
—~37.0 + ] 66.3 (48.8)
742+ § 71.9 (1.03%)
—7.59 + 7 75.7 (9.97)
—1.04 4+ j 90.5 (1.15)
—~1.35 £ 95.1 (1.42)
~1.34 4 j 131, (1.02%)

* indicate critical damping ratio constraints (0.999 < £ < 1.03)
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Figure I: Three Dimensional Frame Element and Its Cross Sections
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Figure 2: Example | - Cantilever Beam
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Mass (kg)

Case

8007 (No. of CDV’s)
750- 1 (40)
700- -~ 2 (20)
1 R T T 3 (2)
500 o 4 (1)

— 5 (1)
550-
500-
450- T
wi
350-
300 N

0 2 4 6 8 10 12 14 16

Number of Analysis

Figure 3: [teration History for Example I - Cantilever Beam,
Cases -5, Control Design Variable Linking (I)
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Final Dimensions (c¢m)
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) 200 30 e s

Case Number (No. of CDV’s)

0.00

o~

Figure 4: Final Cross Sectional Dimensions for Example | - Cantilever Beam,
Cases 1-5, Control Design Variable Linking (I)
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B00- v
Voo Case Initial Gain
750_' -"\ \
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630- “ ---- 8  full Riccati
600- Ly - - 9  2x2 Riccati
350
500-
450
400
350
300 T I 1 L) I I T 1 1
2 3 4 5 6 7 g 10 11 12
Number of Analysis
Figure 5:

Iteration History for Example 1 - Cantilever Beam,
Cases 6-9, Different Initial Feedback Gains
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Final Dimensions (cm)

0.80+

0.70-

0.60-

Case Number

Final Cross Scctional Dimensions for Example 1 - Cantilever Beam,

Cascs 6-9, Different Initial Feedback Gains

Figure 6:
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Figurc 7: Example 2 - ACOSS FOUR Structure
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Mass
59+

20

1 5 T T T ! 1 i I ! ] T | 1

Number of Analysis

Figure $: Iteration Histories for Example 2 - ACOSS FOUR, Cases I and 2
(wWy =134, wp=1.6, £ 20.15)
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Mass

99+
50—.-.-'..
----- Case 3
— Case 4
20-
15 ! ! 1 T 1 T I I ! I i 1
2 3 4 5 6 7 8 9 1011 12 13

Number of Analysis

Figure 9: TIteration Histories for Example 2 - ACOSS FOUR, Cases 3 and 4
(1.3 < w,, < 1.345, Op215,01093<¢,<0.11, i=1,..,4)
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Figure 10: Final Truss Arcas for Example 2 - ACOSS FOUR
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Figure 11: Example 3 - Antenna Structure
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Initial Closed-Loop Eigenvalues
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Figure 12: Comparison of Initial Closed-Loop Eigenvalues for Example 3 -
Antenna Structure
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220

Case (No. of CDV's)
> 1(144)
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=S = 2 (72)
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o
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Figure 13: [teration History for Example 3 - Antenna Structure,
Cases 1-10, Control Design Variable Linking (1)
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154



Imensions

eI I I I XYY XL LY

20

> e s i e e B O 6

e e ve W e o S

19

b e o e v o o e e e o 00 D 8

b e

- o e e

18

i o e e e i o e S o e 0

e 4

17

> S o e s P S e o

16

15

Final D

B (cm)

14

(S
3
C] 3,4
7ds.s
178

20

T

e

rIrrr

18

[ s rweerreeeeea e n s

;-

C

17

e e e o o 5 v e e e

rrrr

18

XY

T T D W e e

13

I LY I Y Y r Y T Y Y X T Y XXX YT

T . . W S

14

T e e o o S B o 3

YT Y Yy

XTI T LTI I ALY LY

X

13

13

ITX XX T Y T I T X I XX T LI XTI

12

12

> oo e > Y s a3

e e

11

1M1

T Y Y T T XY I T YT T Y Y XTI IYTY

H (cm)

25—
20
15
1o
=
o

T (cm)

0.40
Q.30

18 18 20

17

Case Number

s for Example 4 - Antenna Structure,

155

1s
tmension

12 13

11

Cases 10-20, Control Design Variable Linking (I1)

Final Structural D

ure 19

a
o

I

F



Final Mass (kg)

[JCases 1-10
- :
’ Cases 11-20
190- i [l Case 1 of Example 3

ARG AN EEY

ALY Y

X

4
— ] 14
4 14
o H
4 g 3
14
WAai g a8 .
] ’ § 7 H ¥
9 : 4 H e
— 4 » 14 1 =
9 b4 " »
" I H M 14
# 1 s H /1

0 4 12 16 2 144
Number of Independent CDV’s

Figure 20: Number of Independent CDV vs. Final Mass - Example 4,
Antenna Structure, Control Design Variable Linking (1)

156



300~

290-

280

270

260

2501 A Case 1 CE

Objective Mass (kg)

240+ -»- Case 2 a

230 -8 Case 3 CE & a

Number of Analysis

Figure 21: Iteration History for Example 5 - Antenna Structure,
Additional Constraints

157



220

2104

200

Objective Mass (kg)

-&- Case 4 updating

-n- Case 5 truncation

Figure 22:

I I I I I I I ] T T 1

6 7 8 9 10 11 12 13 14 15 16
Number of Analysis

[teration History for Example 5 - Antenna Structure,
Updating and Truncation of Gain Matrices

158



220+

18
210 : -A&- Case 6 ¢

200+

-u- Case 7 c1x%2

8- Case 8 c1/2

190

Objective Mass (kg)

160+

170 T4 Y Do A, A

Number of Analysis

Figure 23: Iteration History for Example S - Antenna Structure,
Variable Mass Design Elements

159




imensions

Final D

B (cm)

r
I IO T Y

LTI TY YN Y Y

T I T I I I I T I I T T T I I I T

C
T LT T Ty

T I X I I T I I T I AL LTI YT

1
I LTI ITTTTIYYIYYXY
[«

I I T Y Y I T I I I I I XTI TY

C
' W Y T T T A L T W S YR W W W R R S

Y A G0 A P A R A S A B9 Y 4

I IO OL L LY

T T I I I I LI I LI T I T LY

I I TTITTYTCT Y

ITI XTI I Y T T LI LTI rYY

r
AR AN NUAGA AN BEURCERREY

Y I T I T I YT T Y Y TT YT I YITTIY

1 | | 1
n o] n o} n 0
N o

- -

C —®

[ —————

H (cm)

[
=3
1 3.
i 5.8
7.8

Element

I L LRI I LIITY LY

T I Y YT I T I Y T I Y I XYY T I I IY

T LT O

WD WD R U0 WD T O A D T . W

O A A S Y D -

TITOITLI TS

I

I I I I I I XL LI rYTTTII YT Y

0 WD W . W i W e e W O W T T W W VR WL A L

—

D Y .

[T T~ v

Iy X I I T I YT LTy

MG GUEAGNNAEANGLR R R E WY

T I Y Y I I I I I I I LY YT I Y

1 T

3
o

[\ N -

T |
n o (4} o]

T (cm)

CEOTIXYY

XY

IXIIY

Irrr

XTI XY

T

T

[ enweneneeens

TITIT

CIIIIXXY

T

T I T I

TILILXY

[ PRSPPI P LI PRI
ORI T T T
| - AN
-
I I rrril I T IT
| 1 T
w o] o] ] 0
. n N " 0
o [+] [} o] [}

Case Number

for Example 5 - Antenna Structure,

Additional Constraints and/or Special Features

tmensions

Final Structural D

gure 24:

i

160



# : Node Number

* : independent DV Number

$ : Actuator Number

D ()

L3 18 12 b
5 5 5
3
NLS4H 5
6
10 4
7
g 3
7 \J
1
6 \6 2
8 4
1
7 1%

Grillage Structure

Figure 25:

Example 6 - Grillage Structure

161

]

1

B=2.0 in
Rectangular Beam Cross Section

f(t) (ib)
0.

I I
Time (sec.)

External Load



),

Objective Mass (Ib-sec’/in)

0.15+

0.124

-~ Case 1 (1 CDV)

-~ Case 2 (2 CDV's)

— Case 4 (5 CDV's)

----- Case 5 (10 CDV's)

(
(
-+ Case 3 (3 COV's)
(
(
(

-- Case 6 (20 CDV's)

0114 Es T e,
0-10 1 I T I | i
0 5 10 15 20 25
Number of Analysis
Figure 26: Itcration History for Example 6 - Grillage Structure,

Cases 1-6, Control Design Variable Linking (II)

162



Depth (in)

EZ] case 1 [ Case 2 |[M) Case 3

0.50+

Depth (in)
- [Z] Cose 4 | Case 5 |KJ Case 6
0.50
f 2\
2 o B0 i i
0.00 T |‘ HE T gﬂ "f\ ;? T
1 2 J 5 6 7 8

Design Variable Number

Figure 27:  Final Structural Dimensions for Example 6 - Grillage Structure,
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Figure 28: Number of Independent CDV vs. Final Mass - Example 6,
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